Adjunctions

Ross Tate

September 29, 2014

Exercise 1. Prove that the inclusion functor Set $\stackrel{I}{\hookrightarrow}$ Rel has a right adjoint. You may use any of the equivalent definitions of adjunction. For clarification, I is the functor mapping each set X (an object of Set) to the set X (also an object of Rel) and each function $X \rightarrow Y$ (a morphism of Set) to the relation $\lambda\langle x, y\rangle . f(x)=y$ (a morphism of Rel).

Exercise 2. There is a functor from 1 to Set picking out the empty set, and another functor from $\mathbf{1}$ to Set picking out the singleton set. One is the left adjoint to the unique functor from Set to $\mathbf{1}$, and the other is the right adjoint to the unique functor from Set to 1. Determine and prove which is which.

Exercise 3. \mathbb{N} : $\mathbf{1} \rightarrow$ Set maps the only object of $\mathbf{1}$ to the set \mathbb{N}. repeat is the natural transformation from \mathbb{N} to $\mathbb{N} ; \mathbb{L}$ (i.e. $\mathbb{L}(\mathbb{N})$) mapping the sole object of $\mathbf{1}$ to the function mapping n to the length- n list $[n, \ldots, n]$. sum is the natural transformation from $\mathbb{N} ; \mathbb{L}$ to \mathbb{N} mapping the sole object of $\mathbf{1}$ to the function mapping a list of numbers and returns its sum.

The string diagram to the right denotes a natural transformation from the functor $\mathbb{N}: \mathbf{1} \rightarrow$ Set to itself (\mathbb{N} maps the only object of $\mathbf{1}$ to the set \mathbb{N}). In particular, this means it describes a function from \mathbb{N} to \mathbb{N}. Determine what that function is in terms of basic arithmetic. (No proof necessary; the purpose of this is to learn the notation.)

