
.

.

.

.

CS 6112 (Fall 2011)
Foundations of Concurrency
29 September 2011
Scribe: Carlos Otero

1 π-Calculus Review

P :: M | P1|P2 | νx P | !P
M ::= 0 | π.P |M1 +M2

π := τ | x ⟨y⟩ | [x = y]π

2 Introduction

This session we will talk about Asynchronous π-Calculus.
Asynchronous π-Calculus accurately models real time systems that have some characteristics like:

• There exists delay on channels

• There are buffers on channels

• Information might be dropped if buffers over ow

Besides its practical implications, Asynchronous π-Calculus present interesting theoretical challenges.
All the equivalent relationships we built for CCS become more subtle once we incorporate the model of
Asynchronous π-Calculus.

In full π-Calculus, synchronization occurs on guards since residual processes re whenever a guard
evaluates true, in Asynchronous π-Calculus, we would like to avoid unnecessary synchrononization hap-
pening because of the guards. We would like synchronization to only happen whenever send and receive
operations happen.

For the rest of the session we will:

• De ne Asynchronous π-Calculus

• Examples how Asynchronous π-Calculus is used

• How to convert π-Calculus into Asynchronous π-Calculus

3 De nition. Asynchronous π-Calculus

This method is described by Kohei Honda [3].

P ::= xy |M | P1|P2 | νx P | !P
M ::= 0 | x(y).P | τ.P |M1 +M2

1

Note: The send notation used by Kohei Honda does not use ⟨.⟩ for sends.
Sends are banned to guard processes, in order to avoid unnecessary synchronization. Receives can guard
processes, and sends can only guard the null process. By using this method whenever we attempt to send,
it immediately commits. If one would like to do sequencing, then an explicity acknowledge channel is
required to send back the value that was sent.

A send is waiting to react with a symmetric receive action. Sequencing can still happening by using
private channels to acknowledge a channel. to perform send and receive actions.

Summations are also restricted so that only sends and τ guarded processes can appear. Hence it is
impossible to build a process that looks like:

xy + w(x).P

The reaction rule for this process is:

x ⟨y⟩ | (x(z).P +M) → P{y/z}
: React

3.1 Lossy channels

This model correctly handles delay and buffering on the channel, however it still considers lossless chan-
nels.

To allow lossy channels, once could explicitly model loss usign a loss process:

lserver ≡!x(y).0

One canmake the analogy of this process to the the /dev/null device in anyUnix-like operating system.

3.2 Order and sequencing

We can enforce ordering by intentionally introducing data dependencies. The following example shows
how we can enforce particular ordering of events:

P ≡ νx, w (xw | w(u).(ua | w(z).zb) |
x(w).νu(wu | u(y).ν z(wz | z(s).Q)))

In this example, the sequence of events that happen are:

• w is sent on channel x

• u is sent on channel w

• a is sent on channel u and it is stored in y

• z is sent on channel w

• b is sent on channel z and it is stored in s

At the end, we have a residual process Q{a/y, b/s}. This process shows how sequencing was achieved
between channels x → y → z using private channels w and u for sequencing.

2

4 π-Calculus translation into Asynchronous π-Calculus

This section describes a way to integrate and encode any process of the π-Calculus into asynchronous π-
Calculus.
〚〛:Operator that de nes the equivalence between full π-Calculus into Asynchronous π-Calculus.

4.1 Translation of send and receive actions

First, we need to change the protocols for sends and receives:

〚x ⟨y⟩ .P 〛 , ν w(xw | w(u).(u ⟨y⟩ | 〚P 〛))
〚x(z).Q〛 , x(w).ν u(wu | u ⟨z⟩ .〚Q〛)

The translation above will send a channel on x. The symmetric receive action happens. Afterwards, the
data is sent along with that channel in parallel with the execution of the residual process P .

4.2 Translation of sums

We need to split a sum comprising send, receive and τ actions into an equivalent program that includes only
sums of send OR receives.
We will rst extend the encoding of asynchronous π-Calculus:

P ::= xy |M | P1|P2 | νxP | !P |N
M ::=

∑
i

xi(z).Pi

Sums are not essential constructs with the exception of unary sums. τ transitions could be added to the
model described above without much dif culty.

To translate a summation from π-Calculus into asynchronous π-Calculus we could use the (|.|) trans-
lation.

(|.|) is a homomorphic translation except for sums

(|
∑
i

xi(z).Pi|) , ν l (Proceed ⟨l⟩)

|
∏
i

xi(z).ν pi, fi(l ⟨p, f⟩)

| p.(Fail ⟨l⟩) | (|Pi|))
| f.(Fail ⟨l⟩)|(xiz)))

Where:

Proceed(l) ≡ l(p, f).p

Fail(l) ≡ l(p, f).f

Note that in the previous equation pi and fi are private channels to each process.
∏

is used to denote
the parallel composition of processes.

3

Whenever a send executes, they will get a lock, execute the residual process attached to the receive and
then pass the lock to the next process. We spawn parallel servers that will determine if a speci c process is
allowed to proceed or not. Since the send is destined to a speci c process, one of the parallel process will
interact with Proceed while the other processes will interact with Fail. The processes will keep sending Fail
to each other, creating a cascading domino effect. At the end, this process will leave a residual Fail that can
not communicate to any other process.

Ideally we would like to have translations of processes that contains summations of both send and
receives like the one described below:

P ::= xy |M | P1|P2 | νxP | !P |N
M ::=

∑
i

xi(z).Pi

N ::=
∑
i

xidi.P

When a non-deterministic receive fails, it can send back out the value it received.
{{.}} is an homomorphic translation except for sums of sends and receives.
First, we translate a sum of receives∑

i

xidi.Pi , νs(Proceed ⟨s⟩ |
∏
i

νa.xi ⟨di, s, a⟩ .νp, f(a ⟨p, f⟩ |p.Pi|f.0)

∑
i yi(z).qi ,

νr(Proceed ⟨r⟩ |∏
i νg (g|

!(g.yi(z, s, a).νp1, f1(r ⟨p1, f1⟩
|Pi(νp2, f2(s ⟨p2, f2⟩

|p2.(Fail ⟨r⟩)|Fail ⟨s⟩ |Proceed ⟨a⟩ |{{Qi}})
|f2.((Proceed ⟨r⟩ |Fail ⟨s⟩ |Fail ⟨a⟩ |g
|f1.(Fail ⟨r⟩ | y1 ⟨z, s, a⟩))))

At the beginning of execution all processes have the lock, and the processes receive channel names on y,
z as well as 2 locks a (for this sender) and s for the rest of the receivers. The channels p1 and f1 are private
channels that allow us the process to check if they should proceed or fail.

If we get proceed, then we have been selected, otherwise the whole communication has failed. In that
case we should roll back by repetitevely sending proceed and fails. It is important to mention that only one
copy interacts at any speci c time.

The tranlation of a sum of sends is left as an exercise to the reader.

5 Conclusion and Final remarks

The nal translation was omitted in class, but the reader can refer to [1] for more information.
During this section, we described the importance of Asynchronousπ-Calculus, since it properlymodels

real-life situations. We removed extra synchronization by disallowing processes guarded by send actions
as well as limiting the summations.

During the last part of the section we de ned some translations that allows us to move from full π-
Calculus into a more leaner version of Asynchronous π-Calculus.

4

It is still an open-research question to make this translation fully abstracted with respect to the equiv-
alence relations that we have discussed for full π-Calculus (eg. bisimulation). There are ongoing efforts to
nd the solution to this translations. One of such methods was done by Palamidessi [2] that proposes the

following:

Theorem 1. There does not exist a translation from Asynchronous π-Calculus to π-Calculus with the following prop-
erties:

〚Pσ〛 = 〚P 〛σ (1)

〚P |Q〛 = 〚P 〛|〚Q〛 (2)

∀P, N ⊆ Fv(P), n ∈ N,n /∈ E, n /∈ S (3)

for all maximal computations

ifP
s−→

∗ n−→ t−→
∗
P ′, n ∈ N,n /∈ E, n /∈ S

〚P 〛 s−→
∗ n−→ t−→

∗
〚P ′〛

The rst equation states that one might need variable renaming while performing the translation. The
second equation establishes that the parallel composition of two processes might result in something differ-
ent than the parallel composition of the translation of each individual process. The last equation explains
that if a process steps from P to P ′, we might required extra communication actions in order to achieve a
translation that makes the equivalent process 〚P 〛step to 〚P ′〛.

References

[1] The π-Calculus: A theory of Mobile Processes. Sangiorgi D., Walker D. Cambridge University Press,
2003, 978-0521543279.

[2] Comparing the expressive power of the synchronous and the asynchronous π-Calculus, Palamidessi
C, Proc of the 24th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL), 1997

[3] An Object Calculus for Asynchronous Communication. Honda Kohei, Tokoro M. Proc of the European
Conference on Object-Oriented Programming (ECOOP), 1991.

5

