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1 Weak Bisimuluation Discussion

1.1 Processes P and D

Building on our discussion of weak bisimulation from last class, we return to the following two processes
from last week, P andD, shown in Figures 1 and 2 respectively.

A = a ·A′

A′ = b̄ ·A
B = b ·B′

B′ = c̄ ·B
P = new b(A|B)

..new b(A|B) .new b(A′|B) .new b(A|B′)

.new b(A′|B′)

.a .τ

.a

.̄c

.̄c

Figure 1: Process P and its transition graph

D = a · τ ·D′

D′ = a ·D′′ + c̄ ·D
D′′ = c̄ · τ ·D′

..D .τ ·D′ .D′

.D′′

.a .τ

.a

.̄c

.̄c

Figure 2: ProcessD and its transition graph

1.2 Showing Weak Bisimulation

We showed last week that P ∼ D, i.e they are strong bisimulations of one another. This should be fairly
obvious from inspecting their transition graphs. We’d like to show that the following process E is weak
bisimulation of both P andD, i.e. E ≈ P and E ≈ D.

We can do this by proving thatE ≈ P . Recall that thewhole point ofweak bisimulation is to capture the
speciàcation of a process without having to deal with the implementation details, i.e. internal transitions.

E is shown below in Figure 3.
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E = a · E′

E′ = a · E′′ + c̄ · E
E′′ = c̄ · E′

..E .E′ .E′′
.a .a

.̄c.̄c

Figure 3: Process E and its transition graph

Looking at the transition systems for P and E in Figures 1 and 3, it’s apparent that they aren’t strong
bisimulations of one another, but it’s not clear that they are weak bisimulations. In order to prove that they
are weak bisimulations of one another, we have to ànd the set S of pairs of states that satisfy the weak
bisimulation criteria shown in Figure 4.

.

.P .S .Q

.P ′ .∼ S ∼ .Q′

.λ .λ

.

.P .S .Q

.P ′ .∼ S ∼ .Q′

Figure 4: Weak Bisimulation Criteria

We can now construct S using Figures 1, 3, and 4 as follows:

S = {(new b(A|B), E),

(new b(A′|B), E′),

(new b(A|B′), E′),

(new b(A′|B′), E′′)}

So long as the pairs in set S are representative of the states of the processes and they satisfy the criteria
from Figure 4, we can say that E ≈ P . This in turn implies that E ≈ D as well.

1.3 Additional Examples

Onemight be tempted to assume that we can simply collapse any τ transitions in a process in order to show
weak bisimulation. While this intuition is a good starting point, it does NOT hold in all cases, as in Figure
5 where P ̸≈ Q ̸≈ R.
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P = a+ b

..

. .

.a .b

Q = a+ τ · b

..

. .

.

.a .τ

.b

R = τ · a+ τ · b
..

. .

. .

.τ .τ

.a .b

Figure 5: Transition Graphs for P , Q, and R. Filled in nodes denote states which cannot bisimulate states
of P .

In Figure 5, we claim that P ̸≈ Q. We’ll now show a proof sketch by contradiction.
Suppose P ≈ Q. Then ∃ a weak bisimulation S such that PSQ. This would imply the following:

• Q → b · 0

• ∃P ′such that P ⇒ P ′and PSb · 0

• P = P ′implies PSb · 0

However, P can do P
a→ 0 and

a⇒ doesn’t exist, therefore S is not a weak bisimulation and P ̸≈ Q.

1.4 Weak Bisimulation as a Process Congruence

The following are facts:

• P ≈ τ · P

• M +N + τ ·N ≈ M + τ ·N ⇒ N + τ ·N ≈ τ ·N

• M + α · P + α · (τ · P +N) ≈ M + α · (τ · P +N)

Furthermore, P ≈ Q implies:

• α · P +M ≈ α ·Q+M

• new a P ≈ new a Q

• P |R ≈ Q|R

• R|P ≈ R|Q

Note that N1 ≈ N2 ̸⇒ M + N1 ≈ M + N2. A counter example can be seen in Figure 5 or in the
following system:

N1 = b

N2 = τ · b
M = a
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2 Weak Bisimulation Examples

2.1 Agency vs Job Shop

In this example, we will look at agents and jobbers. They can each do one of three types of jobs at a time: easy
(E), neutral (N), or hard (H) jobs. The agents are experienced workers and can do one job at a time without
assistance, but the jobbers are new to the job–no pun intended–and require the use of tools to accomplish
any jobs harder than easy jobs. They require the use of a mallet to do neutral jobs, and a hammer to do hard
jobs. Note that they can do neutral jobs with a hammer as well. Once an agent or jobber is done they will
use an ō transition to signal they have output, i.e. they are ready for a new job.

We will àrst examine an agent, A. Two agents make up an Agency.

A =
∑

x∈{E,N,D}

ix ·A′

= iE ·A′ + iN ·A′ + iD

A′ = ō ·A

Agency = A|A

Jobbers J and Job Shops are slightly more complicated. They require the mallets and hammers, and the
actions gm and gh to get the mallet and hammer–and the corresponding pm and ph to replace the tools.

M = gm ·M ′

M ′ = pm ·M

H = gh ·H ′

H ′ = ph ·H

J =
∑

x∈{E,N,D}

ix · J ′

JE = o · J
JN = gm · pm · JE + gh · ph · JE
JD = gh · ph · JD

Job Shop = new t⃗(H|M |J |J)

We’d like to show that Agency ≈ Job Shop. We can do this the same way we showed E ≈ P in
Section 1.2.

For x, y ∈ {E,N,D},
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S = {((A|A), new t⃗ (J |J |H|M)),

((A|A′), new t⃗ (J |Jx|H|M)),

((A|A′), new t⃗ (J |ph · JE |H ′|M)),

((A|A′), new t⃗ (J |pm · JE |H|M ′),

((A′|A′), new t⃗ (Jy|Jx|H|M)),

((A′|A′), new t⃗ (Jy|ph · JE |H ′|M)),

((A′|A′), new t⃗ (Jy|pm · JE |H|M ′)),

((A′|A′), new t⃗ (ph · JE |pm · JE |H ′|M ′))}

The system we just described has the Jobbers return the hammer and mallet to the public tool set after
they are done using them. We could envision a system where this is NOT the case, i.e. we kept holding
the tool until we didn’t need it–we got an easy job, or we we need a better tool–we have the mallet but we
need the hammer.

If we have Jobbers that don’t put down tools unless they have to, it could be that for a Job Shop with
two Jobbers, there is a trace where one Jobber is starved for tools. In other words, one Jobber is hogging the
hammer or mallet. If we have some notion of job ordering, and we submit three hard jobs in a 123 ordering
we cannot have jobs ànishing in the following orders: 312, 321, 213.

It’s relatively clear why 3 cannot come àrst, but the 213 ordering is slightly more subtle. In this case, if
a Jobber servicing job 2 picks up the hammer, he will keep holding the hammer and service job 3, assuming
the other Jobber is servicing job 1. Thus, if all three jobs are hard jobs, the only correct trace is 231.

2.2 Scheduler Example

Now we’re going to turn our attention to a token-ring based scheduler. If we look at a single node in the
ring, it has 4 ports: a, b, c, d̄. c and d̄ are for communicating to its neighbors in the ring and a and b are for
scheduling.

a is connected to another process which requests a job start for the task scheduled by that node. b is
connected to the task scheduled by that node and a communication action occurs when the task ànishes.

Thus, the scheduler can be deàned as follows. X deànes the set of tasks that are running. bj represents
a task in that set ànishing, and ai represents a task at node i starting. We’ve loosened the syntax a little, so
X − j is effectively a removal of j from the set, i.e. the job at node j has ànished.

Schedi,X =


∑
j∈X

bj · Schedi,X−j : i ∈ X∑
j∈X

bj · Schedi,X−j + ai · Schedi+1,x:=x∪i : i /∈ X

The process Scheduler is initialized as such:

Scheduler = Sched1,∅

Another way of deàning the scheduler is shown below as S:
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Aj = A < ai, bi, ci, ci−1 >

A(a, b, c, d) = a · c · b · d̄ ·A
A = a · C
C = c ·B
B = b ·D
D = d̄ ·A
S = new c⃗ (A1|D1| . . . |Dn)

A sample partial trace of this process as follows:

1. S takes an a transition to:

2. new c⃗ (C1|D2| . . . |Dn) transitions to

3. new c⃗ (B1|A2|D2| . . . |Dn)

We’d like to show thatS ≈ Scheduler, but it doesNOT. Once you get to theC state inS, your neighbor
MUST be ready to act on d̄ before you can release on b. In Scheduler, you can release your b at any time.
To àx this, we can change S to be the following:

A = a · C
C = c · E
E = b ·D + d̄·
B = b ·A
D = d̄ ·A
S = new c⃗ (A1|D1| . . . |Dn)

E alloows us to terminate a process or interact with our neighbor. This new process S ≈ Scheduler.
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