

1 Review of CCS

$$
P::=A\langle\vec{a}\rangle\left|\sum_{i \in \mathcal{I}} \alpha_{i} \cdot P_{i}\right| P_{1}\left|P_{2}\right| \text { new } a P
$$

2 Alegebraic Properties of Bisimilarity

An example of of the kinds of properties exhibited by bisimilarity is $a \mid b \sim a . b+b . a$
Proposition 1. $\forall P . P \sim \sum\left\{\alpha . P^{\prime} \mid P \xrightarrow{\alpha} P^{\prime}\right\}$
The summation is well-formed, since P^{\prime} can contain only a finite number of parallel compositions and sums over finite domains.

Proposition 2.

$$
\begin{aligned}
& \forall P_{1} \ldots P_{n} . \\
& P_{1}|\ldots| P_{n} \sim \sum^{\sim}\left\{\alpha .\left(P_{1}|\ldots| P_{i}^{\prime}|\ldots| P_{n}\right) \mid P_{i} \xrightarrow[\rightarrow]{\alpha} P_{i}^{\prime} \wedge 1 \leq i \leq n\right\} \\
& +\sum\left\{\tau \cdot\left(P_{1}|\ldots| P_{i}^{\prime}|\ldots| P_{j}^{\prime}|\ldots| P_{n}\right)\right. \\
& \\
& \left.\quad \left\lvert\, P_{i} \xrightarrow{\lambda} P_{i}^{\prime} \wedge P_{j} \xrightarrow{\frac{\lambda}{\lambda}} P_{j}^{\prime} \wedge 1 \leq i<j \leq n\right.\right\}
\end{aligned}
$$

Proposition 3 (Expansion Law).

$$
\begin{aligned}
& \forall P_{1} \ldots P_{n}, \overrightarrow{\vec{a}} . \\
& \text { new } \vec{a} P_{1}|\ldots| P_{n} \sim \sum\left\{\alpha \text { new } \vec{a}\left(P_{1}|\ldots| P_{i}^{\prime}|\ldots| P_{n}\right)\right. \\
& \left.\mid P_{i} \xrightarrow[\rightarrow]{\rightarrow} P_{i}^{\prime} \wedge 1 \leq i \leq n \wedge \alpha, \bar{\alpha} \notin \vec{a}\right\} \\
& +\sum\left\{\tau \text { new } \vec{a}\left(P_{1}|\ldots| P_{i}^{\prime}|\ldots| P_{j}^{\prime}|\ldots| P_{n}\right)\right. \\
& \left.\mid P_{i} \xrightarrow[\rightarrow]{\lambda} P_{i}^{\prime} \wedge P_{j} \xrightarrow{\bar{\lambda}} P_{j}^{\prime} \wedge 1 \leq i<j \leq n \wedge \lambda, \bar{\lambda} \notin \vec{a}\right\}
\end{aligned}
$$

2.1 Expansion Law at Work

Consider the following process.

$$
\begin{array}{cc}
A=a \cdot A^{\prime} & b=b \cdot B^{\prime} \\
A^{\prime}=\bar{b} \cdot A \quad & B^{\prime}=\bar{c} \cdot B \\
& \text { new } b(A \mid B)
\end{array}
$$

By the expansion law, the following properties hold for the above system.

```
new }b(A|B)~a.new b(\mp@subsup{A}{}{\prime}|B
new b}(\mp@subsup{A}{}{\prime}|B)~\tau.new b(A|\mp@subsup{B}{}{\prime}
new b}(A|\mp@subsup{B}{}{\prime})~a.new b(\mp@subsup{A}{}{\prime}|\mp@subsup{B}{}{\prime})+\overline{c}\mathrm{ .new }b(\mp@subsup{A}{}{\prime}|B
new b}(\mp@subsup{A}{}{\prime}|\mp@subsup{B}{}{\prime})~\overline{c}.new b(\mp@subsup{A}{}{\prime}|B
```


3 Sequential Composition as a Derived Form

We can express sequential composition in CCS as

$$
P ; Q=\text { new start }(P[\text { start } / \text { done }] \mid \text { start } . Q)
$$

where P signals $\overline{d o n e}$ when it finishes.

Exercise

Show that $(P ; Q) ; R \sim P ;(Q ; R)$

3.1 Congruence

An elementary context is a expression with one hole at the top-level. For instance, the elementary contexts for processes are

$$
E::=\sum_{i \in \mathcal{I}} \alpha_{i} \cdot P_{i}+\alpha . \square+\sum_{j \in \mathcal{J}} \alpha_{j} . P_{j}|\square| P|P| \square \mid \text { new } a
$$

A congruence is a relation closed under substitution in related contexts.
C is a congruence $\Longleftrightarrow P C Q$ implies $E[P] C E[Q]$ for all processes P, Q and elementary contexts E.
Proposition 4 (\sim is a congruence).
If $P \sim Q$ then

- $\alpha . P+M \sim \alpha . Q+M$
- new $a P \sim$ new $a Q$
- $P|R \sim Q| R$
- $R|P \sim R| Q$

4 Experiment LTS

Definition 1. An experiment is a sequence $\lambda_{1}, \ldots, \lambda_{n} \in \mathcal{L}^{*}$.
Based on the labeled transition system (\rightarrow) we defined for CCS, we now define an experiment LTS, whose transitions will be denoted by \Rightarrow.

- $P \Rightarrow Q \stackrel{\Delta}{\Longleftrightarrow} \underbrace{P \rightarrow \ldots \rightarrow Q}_{0 \text { or more steps }}$
- $P \stackrel{e}{\Rightarrow} Q \stackrel{\Delta}{\Longleftrightarrow} P \Rightarrow \xrightarrow{\alpha_{\alpha}} \xrightarrow{\alpha_{2}} \ldots \xrightarrow{\alpha_{n}} P_{n} \Rightarrow Q$

$$
\text { where } e=\alpha_{1} \ldots \alpha_{n}
$$

We can intuitively interpret each type of transition as follows

> | \Rightarrow | 0 or more reactions |
| :--- | :--- |
| $\stackrel{\tau}{\Rightarrow}$ | 1 or more reactions |
| $\stackrel{e}{\Rightarrow}$ | Performing experiment e |

Definition 2. A binary relation \mathcal{S} is a weak simulation if and only if, $\left(P \mathcal{S} Q \wedge P \stackrel{e}{\Rightarrow} P^{\prime}\right)$ implies $\exists Q^{\prime} .\left(Q \stackrel{e}{\Rightarrow} Q^{\prime} \wedge P^{\prime} \mathcal{S} Q^{\prime}\right)$.

We say Q weakly simulates P if there exists a weak simulation \mathcal{S} such that $P \mathcal{S} Q$.
Definition 3 (Weak Bisimulation).
A binary relation \mathcal{S} is a weak bisimulation if both \mathcal{S} and its converse \mathcal{S}^{-1} are weak simulations.
Definition 4 (Weak Bisimilarity).
P is weakly bisimilar to Q, written $P \approx Q$, if there exists a weak bisimulation \mathcal{S} such that $P \mathcal{S} Q$.
Proposition 5. \mathcal{S} is a weak bisimulation if and only if the following hold whenever $P S Q$.

1. If $P \rightarrow P^{\prime}$ then $\exists Q^{\prime} . Q \Rightarrow Q^{\prime} \wedge P^{\prime} \mathcal{S} Q^{\prime}$
2. If $P \xrightarrow{\lambda} P^{\prime}$ then $\exists Q^{\prime} . Q \stackrel{\lambda}{\Rightarrow} Q^{\prime} \wedge P^{\prime} \mathcal{S} Q^{\prime}$

(1)

(2)

Proposition 6.

1. \approx is an equivalence relation.
2. \approx is a weak bisimulation. (In fact, it is the largest one).
3. Every strong bisimulation is a weak bisimulation.
4. Similar to the definition of strong bisimulation up to congruence, we can define weak bisimulation up to strong bisimulation.

Proposition 7. The following subset relation holds: $=\subseteq \equiv \subseteq \sim \subseteq \approx$
Proposition 8. If \mathcal{S} is a weak bisimulation up to strong bisimulation and $P \mathcal{S} Q$, then $P \approx Q$

