

1 Review

- $\mathcal{L}=\aleph \biguplus \bar{\aleph}$. Partition the set of actions into two disjoint sets. Note that actions a, \bar{a} are complementary actions.
- Act $=\mathcal{L} \bigcup\{\tau\}$, where Act is the action-set.
- $P::=A\langle\vec{a}\rangle\left|\sum_{i \in I} \alpha_{i} . P_{i}\right| P_{1}\left|P_{2}\right|$ new αP
- Recall the rules necessary for structural congruence

$$
\begin{aligned}
& \text { - Sum: } \frac{M+\alpha . P+N \xrightarrow{\alpha} P}{M} \\
& \text { - React: } \frac{P \xrightarrow{\lambda} P^{\prime}, Q \xrightarrow{\bar{\lambda}} Q^{\prime}}{P\left|Q \xrightarrow{\tau} P^{\prime}\right| Q^{\prime}} \\
& \text { - Par-L: } \frac{P \xrightarrow{\alpha} P^{\prime}}{P\left|Q \xrightarrow{\alpha} P^{\prime}\right| Q} \\
& \text { - Par-R: } \frac{Q \xrightarrow{\alpha} Q^{\prime}}{P|Q \xrightarrow{\alpha} P| Q^{\prime}} \\
& \text { - Res: } \frac{P \xrightarrow{\alpha} P^{\prime}}{\text { new } \alpha P \xrightarrow{\alpha} \text { new } \alpha P^{\prime}} \text { if } \alpha \notin\{a, \bar{a}\} \\
& \text { - Ident: } \frac{\left\{\frac{\vec{b}}{\bar{a}}\right\} P_{A} \xrightarrow{\alpha} P^{\prime}}{A\langle\vec{b}\rangle \xrightarrow{\alpha} P^{\prime}} \text { if } A(\vec{a}) \stackrel{\text { def }}{=} P_{A}
\end{aligned}
$$

2 Notion of Bisimulation

The language of $\mathrm{A}: \mathcal{L}(A)=\{\mathrm{ab}, \mathrm{ac}\}$. The language of $\mathrm{B}: \mathcal{L}(B)=\{\mathrm{ab}, \mathrm{ac}\}$. Both processes recognize the same language. However, as can be seen, B simulates A, but A does not simulate B. Therefore, language equivalence is not good enough.

2.1 Example: One-place buffer

Let $P\left(x, x^{\prime}, y, y^{\prime}\right)=x . \bar{y} \cdot P\left\langle x, x^{\prime}, y, y^{\prime}\right\rangle+y^{\prime} \cdot x^{\prime} . P\left\langle x, x^{\prime}, y, y^{\prime}\right\rangle$
Let A be an instance of P :

$$
\begin{aligned}
A & =P\left\langle a, a^{\prime}, b, b^{\prime}\right\rangle \\
& \equiv a \cdot \bar{b} \cdot A+b^{\prime} \cdot \bar{a}^{\prime} \cdot A
\end{aligned}
$$

$A c t, \overline{A c t}$ are complementary; by convention, $\overline{A c t}$ is designated as output

Figure 2.1: Structural diagram (left) and labeled transition system (right) of a one-place buffer

2.2 Example: Two-place buffer

Define another process B, also an instance of P:

$$
\begin{aligned}
B & =P\left\langle b, b^{\prime}, c, c^{\prime}\right\rangle \\
& \equiv b \cdot \bar{c} \cdot B+c^{\prime} \cdot \bar{b}^{\prime} \cdot B
\end{aligned}
$$

A Two-place buffer is the parallel composition of processes A and $\mathrm{B},(A \mid B)$

Figure 2.2: Structural Diagram for two-place buffer

2.3 Example: Semaphores

Figure 2.4: Structural Diagram for a one-place semaphore

Consider the definitions below for one-ary (left) and two-ary (right) semaphores:

$$
\begin{aligned}
& S^{(1)}=p \cdot S_{1}^{(1)} \\
& S_{1}^{(1)}=v \cdot S^{(1)}
\end{aligned}
$$

$$
\begin{aligned}
& S^{(2)}=p \cdot S_{1}^{(2)} \\
& S_{1}^{(2)}=p \cdot S_{2}^{(2)}+v \cdot S^{(2)} \\
& S_{2}^{(2)}=v \cdot S_{1}^{(2)}
\end{aligned}
$$

Figure 2.3: Labeled Transition System for a two-place buffer

Proposition. $S^{(1)} \mid S^{(1)} \sim S^{(2)}$
Proof. Proving this is equivalent to showing that:

$$
\begin{aligned}
\mathcal{R}=\{ & \left(S^{(1)} \mid S^{(1)}, S^{(2)}\right),\left(S_{1}^{(1)} \mid S^{(1)}, S_{1}^{(2)}\right) \\
& \left.\left(S^{(1)} \mid S_{1}^{(1)}, S_{1}^{(2)}\right),\left(S_{1}^{(1)} \mid S_{1}^{(1)}, S_{2}^{(2)}\right)\right\}
\end{aligned}
$$

This is a strong bisimulation, since, for every transition in $S^{(1)} \mid S^{(1)}$, there is a transition in $S^{(2)}$. Therefore, $S^{(1)} \mid S^{(1)}$ and $S^{(2)}$ are bisimilar (\sim)

3 Strong Simulation

Definition 1. [Strong Simulation up to \equiv (structuralcongruence)]
A binary relation S is a strong simulation up to \equiv if, whenever $P S Q$, if $P \xrightarrow{\alpha} P^{\prime}$ then $\exists Q^{\prime}$ such that $Q \xrightarrow{\alpha} Q^{\prime}$ and $P^{\prime} \equiv S \equiv Q^{\prime}$.
Note: $P^{\prime} \equiv S \equiv Q^{\prime}$ is a relational composition

Figure 3.1: Criteria for Strong Simulation

Proposition. If S is a strong bisimulation of up to \equiv and $P S Q$, then $P \sim Q$
Proof. We must show that $\equiv S \equiv$ is a strong bisimulation. If this is true, then $P \sim Q$. Let $P \equiv S \equiv Q$ and $P \xrightarrow{\alpha} P^{\prime}$. We want to find a Q^{\prime} that completes the following:

$$
\begin{aligned}
& P \equiv S \equiv \\
& \alpha \downarrow \\
& P^{\prime} \equiv S \equiv \\
& \downarrow \alpha \\
& Q^{\prime}
\end{aligned}
$$

Note that for some P_{1} and $Q_{1}, P \equiv P_{1}, P_{1} S Q_{1}$, and $Q_{1} \equiv Q$. Given the transitivity of \equiv,

Given that structural congruence is a strong bisimulation, and the transitivity of \equiv, we have $P \sim Q$.

3.1 Another Example

$D=a \cdot \tau \cdot D^{\prime}$
$D^{\prime}=a \cdot D^{\prime \prime}+\bar{c} \cdot D$
$D^{\prime \prime}=\bar{c} \cdot \tau \cdot D^{\prime}$

$$
\begin{aligned}
A & =a \cdot A^{\prime} \\
A^{\prime} & =\bar{b} \cdot A \\
B & =b \cdot B^{\prime} \\
B^{\prime} & =\bar{c} \cdot B
\end{aligned}
$$

These two processes bisimulate each other. If the rules for the left-hand process were changed to $D=a . \tau . \tau . D^{\prime}$ and $D^{\prime \prime}=\bar{c} . \tau . \tau . D^{\prime}$, then they are no longer a strong bisimulation. However, they are still weakly bisimilar.

4 Algebraic Properties

- $a \mid b \sim a . b+b . a$
- $\forall P, P \sim \sum\left\{\alpha \cdot P^{\prime} \mid P \xrightarrow{\alpha} P^{\prime}\right\}$

