CS 6112 (Fall'2011)

Foundations of Concurrency
6 September 2011
Scribe: Norris Xu

Cornell University
Department of

Computer Science

1 Review: Structural Congruence
Definition of Structural Congruence [=]:
1. a-conversion
2. Re-order sums
5. Plo= P, PlQ = QIP, P(QIR) = (PIQ)|R
4. new a (P|Q) = (new a Q)|Pifa ¢ fv(P),new a 0 = 0, new a,b P = new b,a P

5. A(b) = {b/@} Py where A(@) = P4

2 CCS

2.1 Definitions

L:=NUN Ay Labels
Act ::= LU {7} o, B, ... Actions
P = Alay,...,ap) Z a;.P; | Pi|Py | newa P PQ,... Processes
icl
2.2 Operational Semantics Rules
React P— P P pP— P R
a —————— Par
@P+M|@Q+N) = PlQ % PlQ- P|Q newa P —newa P/
Q=P PP P=¢
— T Struct
TP+ M—P " Q- Q e

2.3 Example: Lottery

Suppose we wish to model a lottery. There is a set of N balls with outcomes written on them, and we want
to non-deterministically choose a ball, output its outcome, and reset to the initial state. We can use the
following definitions:

Lottery = 7.b;.Lottery + ... + 7.b,.Lottery
Main = (Lottery|b;.Py| ... |b,.Py)

This definition simulates a one-ball lottery. The process Lottery picks a ball ¢ and sends the corresponding
action b;, which reacts with the corresponding parallel observer process b;.P;, triggering the appropriate
reward process ;. We could also extend this to a multi-ball lottery by adding more actions to the observer
processes: b;.b;.bg. P;;i,. However, we must take care to avoid having a b; possibly interact with the wrong
b;ina process; i.e., if the second ball drawn is b;, we don’t want that action to react with a process that has
b; as its first action.

We can also use the following alternative definitions:

A(a,b,c) =a.Ca,b,c)
B(a,b,c) = b.C{a,b,c)
C(a,b,c) = 1.B{a,b,c) + c.A{a,b,c)
A; = Ala;, by, aitq) fori e {1,2,3},with3+1=1
B; = Bla;, b, ai+1)
Ci = Clai, bi, ait1)
Li = new ay, az, a3 (C1]|Az]As)
Ly = new ai, az, az (A1|C2|A3)
L3 = new ay, az, az (A1|A2|Cs)

To see how this works, we start by expanding the definition of L;:
Li = new ay,ag, a3 (C1|A2|As) = new a1, ag, a3 (1.B{a1,b1,a2) + az. A{ay, b1, as)|Az|As)
Thus from L, we can take one of two actions: either 7, or as. In the latter case, we get (after ag reacts with

as in As):
new ai, ag, as (A(ai, by, a2)|C{ag, be,as)|As) = Lo

In the former case, we get:
new ai, ag, as (b1.0<a1, bl, CL2>‘A2|A3) = NEwW a1, a9, as (b1.01 ’A2|A3)

Once the b; reacts with an external observer process, we are left with L. Thus at each of the L;, we can
either draw a ball b; or transition to L;y1.

3 CCS asanlTS

3.1 Operational Semantics Rules

A A e _
P =P ! P=P
—— L-Sum ~ — ©=4q L-React ~ aoz ¢ {a.a) L-Res
M+aoa.P+N—P P|Q — P'|Q’ new a P — new a P’
PSP Q' b/@}Py < P' A(@) =P
PP e 9@ g WEBRPD P A@D=Pay g,
PIQ % PIQ PIQ 5 PlQ AF) =P

There are two important things to notice. The first is that we no longer make use of structural congruence;
consequently, we now require separate rules for left- and right-parallel composition, and we need sum-
mands on both sides for the L-Sum rule. The second thing to notice is that in the L-React rule, since A is
internal to the process, we label the transition with 7 so that A is hidden from any external processes. Also,
we still have a-equivalence for new a P expressions: new a P = new b P{b/a} for any other label b.

3.2 Theorems

First, we want to show that even though we no longer have a structural congruence rule, structural con-
gruence in fact still holds. We therefore have the following theorem:

Theorem 1. If P % P’ and P = Q, then 3Q’ such that Q = Q' and Q' = P’

Proof. Here is a partial proof, containing only a few subcases. Proof by induction on P % P’. Case L-Par
L: P = P||P,, P & P|, P" = P||P,. Consider P = (). We now look at all of the ways @ could be
structurally congruent to P:

Subcase Q = P»|P;. Thenlet Q' = P5|P). By L-ParR, Q % Q'. v

Subcase Q@ = Q1|P, Q1 = P;. By the induction hypothesis, 3Q/ such that Q; % Q', Q| = P;. By
L-ParL, Q % Q}|P, = P'. Thenlet Q' = Q| P>. v O

We would also like to show that the transitions in this system correspond to those in the original CCS:

Theorem 2. P — P’ iff P 5= P’ (where 5= indicates relational composition of — and =).

