

1 Review: Structural Congruence

Definition of Structural Congruence $[\equiv]$:

1. α-conversion
2. Re-order sums
3. $P|0 \equiv P, P| Q \equiv Q|P, P|(Q \mid R) \equiv(P \mid Q) \mid R$
4. new $a(P \mid Q) \equiv($ new $a Q) \mid P$ if $a \notin \mathrm{fv}(P)$, new $a \equiv 0$, new $a, b P \equiv$ new $b, a P$
5. $A\langle\vec{b}\rangle \equiv\{\vec{b} / \vec{a}\} P_{A}$ where $A(\vec{a})=P_{A}$

2 CCS

2.1 Definitions

$$
\begin{array}{rlrr}
\mathcal{L}::=\mathcal{N} \cup \overline{\mathcal{N}} & \lambda, \mu, \ldots & \text { Labels } \\
\text { Act }::=\mathcal{L} \cup\{\tau\} & \alpha, \beta, \ldots & \text { Actions } \\
P: & =A\left\langle a_{1}, \ldots, a_{n}\right\rangle\left|\sum_{i \in I} \alpha_{i} . P_{i}\right| P_{1}\left|P_{2}\right| \text { new } a P & P, Q, \ldots & \text { Processes }
\end{array}
$$

2.2 Operational Semantics Rules

$$
\begin{gathered}
\frac{P \rightarrow P^{\prime}}{(a . P+M)|(\bar{a} \cdot Q+N) \rightarrow P| Q} \text { React } \quad \frac{P \rightarrow P^{\prime}}{P\left|Q \rightarrow P^{\prime}\right| Q} \text { Par } \frac{P \rightarrow \text { new } a P \rightarrow \text { new } a P^{\prime}}{} \text { Res } \\
\frac{}{\tau . P+M \rightarrow P} \text { Tau } \quad \frac{Q \equiv P P \rightarrow P^{\prime} P^{\prime} \equiv Q^{\prime}}{Q \rightarrow Q^{\prime}} \text { Struct }
\end{gathered}
$$

2.3 Example: Lottery

Suppose we wish to model a lottery. There is a set of N balls with outcomes written on them, and we want to non-deterministically choose a ball, output its outcome, and reset to the initial state. We can use the following definitions:

$$
\begin{aligned}
\text { Lottery } & =\tau . b_{1} \text {.Lottery }+\ldots+\tau \cdot b_{n} \text {.Lottery } \\
\text { Main } & =\left(\text { Lottery }\left|\overline{b_{1}} \cdot P_{1}\right| \ldots \mid \overline{b_{n}} \cdot P_{n}\right)
\end{aligned}
$$

This definition simulates a one-ball lottery. The process Lottery picks a ball i and sends the corresponding action b_{i}, which reacts with the corresponding parallel observer process $\overline{b_{i}} . P_{i}$, triggering the appropriate reward process P_{i}. We could also extend this to multi-ball lottery by adding more actions to the observer processes: $\overline{b_{i}} \cdot \overline{b_{j}} \cdot \overline{b_{k}} \cdot P_{i j k}$. However, we must take care to avoid having a b_{i} possibly interact with the wrong $\overline{b_{i}}$ in a process; i.e., if the second ball drawn is b_{i}, we don't want that action to react with a process that has $\overline{b_{i}}$ as its first action.

We can also use the following alternative definitions:

$$
\begin{aligned}
A(a, b, c) & =\bar{a} . C\langle a, b, c\rangle \\
B(a, b, c) & =\bar{b} . C\langle a, b, c\rangle \\
C(a, b, c) & =\tau . B\langle a, b, c\rangle+c . A\langle a, b, c\rangle \\
A_{i} & =A\left\langle a_{i}, b_{i}, a_{i+1}\right\rangle \\
B_{i} & =B\left\langle a_{i}, b_{i}, a_{i+1}\right\rangle \\
C_{i} & =C\left\langle a_{i}, b_{i}, a_{i+1}\right\rangle \\
L_{1} & =\text { new } a_{1}, a_{2}, a_{3}\left(C_{1}\left|A_{2}\right| A_{3}\right) \\
L_{2} & =\text { new } a_{1}, a_{2}, a_{3}\left(A_{1}\left|C_{2}\right| A_{3}\right) \\
L_{3} & =\text { new } a_{1}, a_{2}, a_{3}\left(A_{1}\left|A_{2}\right| C_{3}\right)
\end{aligned}
$$

To see how this works, we start by expanding the definition of L_{1} :

$$
L_{1}=\text { new } a_{1}, a_{2}, a_{3}\left(C_{1}\left|A_{2}\right| A_{3}\right) \equiv \text { new } a_{1}, a_{2}, a_{3}\left(\tau . B\left\langle a_{1}, b_{1}, a_{2}\right\rangle+a_{2} \cdot A\left\langle a_{1}, b_{1}, a_{2}\right\rangle\left|A_{2}\right| A_{3}\right)
$$

Thus from L_{1}, we can take one of two actions: either τ, or a_{2}. In the latter case, we get (after a_{2} reacts with $\overline{a_{2}}$ in A_{2}):

$$
\text { new } a_{1}, a_{2}, a_{3}\left(A\left\langle a_{1}, b_{1}, a_{2}\right\rangle\left|C\left\langle a_{2}, b_{2}, a_{3}\right\rangle\right| A_{3}\right) \equiv L_{2}
$$

In the former case, we get:

$$
\text { new } a_{1}, a_{2}, a_{3}\left(b_{1} . C\left\langle a_{1}, b_{1}, a_{2}\right\rangle\left|A_{2}\right| A_{3}\right) \equiv \text { new } a_{1}, a_{2}, a_{3}\left(b_{1} . C_{1}\left|A_{2}\right| A_{3}\right)
$$

Once the b_{1} reacts with an external observer process, we are left with L_{1}. Thus at each of the L_{i}, we can either draw a ball b_{i} or transition to L_{i+1}.

3 CCS as an LTS

3.1 Operational Semantics Rules

$$
\begin{aligned}
& \frac{}{M+\alpha \cdot P+N \xrightarrow{\alpha} P} \text { L-Sum } \frac{P \xrightarrow{P} P^{\prime} Q \xrightarrow{\bar{\lambda}} Q^{\prime}}{P\left|Q \xrightarrow{\tau} P^{\prime}\right| Q^{\prime}} \text { L-React } \quad \frac{P \xrightarrow{\alpha} P^{\prime} \alpha \notin\{a, \bar{a}\}}{\text { new } a P \xrightarrow{\alpha} \text { new } a P^{\prime}} \text { L-Res } \\
& \frac{P \xrightarrow{\alpha} P^{\prime}}{P\left|Q \xrightarrow{\alpha} P^{\prime}\right| Q} \text { L-Par L } \quad \frac{Q \xrightarrow{\alpha} Q^{\prime}}{P|Q \xrightarrow{\alpha} P| Q^{\prime}} \text { L-Par R } \quad \frac{\{\vec{b} / \vec{a}\} P_{A} \xrightarrow{\alpha} P^{\prime} \quad A(\vec{a})=P_{A}}{A\langle\vec{b}\rangle \xrightarrow{\alpha} P^{\prime}} \text { L-Ident }
\end{aligned}
$$

There are two important things to notice. The first is that we no longer make use of structural congruence; consequently, we now require separate rules for left- and right-parallel composition, and we need summands on both sides for the L-Sum rule. The second thing to notice is that in the L-React rule, since λ is internal to the process, we label the transition with τ so that λ is hidden from any external processes. Also, we still have α-equivalence for new $a P$ expressions: new $a P=$ new $b P\{b / a\}$ for any other label b.

3.2 Theorems

First, we want to show that even though we no longer have a structural congruence rule, structural congruence in fact still holds. We therefore have the following theorem:

Theorem 1. If $P \xrightarrow{\alpha} P^{\prime}$ and $P \equiv Q$, then $\exists Q^{\prime}$ such that $Q \xrightarrow{\alpha} Q^{\prime}$ and $Q^{\prime} \equiv P^{\prime}$.
Proof. Here is a partial proof, containing only a few subcases. Proof by induction on $P \xrightarrow{\alpha} P^{\prime}$. Case L-Par L: $P=P_{1}\left|P_{2}, P_{1} \xrightarrow{\alpha} P_{1}^{\prime}, P^{\prime}=P_{1}^{\prime}\right| P_{2}$. Consider $P \equiv Q$. We now look at all of the ways Q could be structurally congruent to P :

Subcase $Q=P_{2} \mid P_{1}$. Then let $Q^{\prime}=P_{2} \mid P_{1}^{\prime}$. By L-Par R, $Q \xrightarrow{\alpha} Q^{\prime} . \checkmark$
Subcase $Q=Q_{1} \mid P_{2}, Q_{1} \equiv P_{1}$. By the induction hypothesis, $\exists Q_{1}^{\prime}$ such that $Q_{1} \xrightarrow{\alpha} Q_{1}^{\prime}, Q_{1}^{\prime} \equiv P_{1}$. By $\mathrm{L}-\mathrm{ParL} \mathrm{L}, Q \xrightarrow{\alpha} Q_{1}^{\prime} \mid P_{2} \equiv P^{\prime}$. Then let $Q^{\prime}=Q_{1}^{\prime} \mid P_{2} . \checkmark$

We would also like to show that the transitions in this system correspond to those in the original CCS:
Theorem 2. $P \rightarrow P^{\prime}$ iff $P \xrightarrow{\tau} \equiv P^{\prime}($ where $\xrightarrow{\tau} \equiv$ indicates relational composition of $\xrightarrow{\tau}$ and \equiv).

