CS 6112 (Fall 2011) Foundations of Concurrency 6 September 2011 Scribe: Norris Xu

1 Review: Structural Congruence

Definition of Structural Congruence $[\equiv]$:

- 1. α -conversion
- 2. Re-order sums
- 3. $P|0 \equiv P, P|Q \equiv Q|P, P|(Q|R) \equiv (P|Q)|R$
- 4. new $a(P|Q) \equiv (\text{new } a Q)|P$ if $a \notin fv(P)$, new $a 0 \equiv 0$, new $a, b P \equiv \text{new } b, a P$
- 5. $A\langle \vec{b} \rangle \equiv \{\vec{b}/\vec{a}\}P_A$ where $A(\vec{a}) = P_A$

2 CCS

2.1 Definitions

$$\mathcal{L} ::= \mathcal{N} \cup \overline{\mathcal{N}} \qquad \qquad \lambda, \mu, \dots \qquad \text{Labels}$$

$$\mathsf{Act} ::= \mathcal{L} \cup \{\tau\} \qquad \qquad \alpha, \beta, \dots \qquad \text{Actions}$$

Cornell University

Computer Science

Department of

$$P ::= A \langle a_1, \dots, a_n \rangle \left| \left| \sum_{i \in I} \alpha_i . P_i \right| P_1 | P_2 \right| \text{ new } a P \qquad P, Q, \dots \text{ Processes}$$

2.2 Operational Semantics Rules

$$\frac{P \to P'}{(a.P+M)|(\overline{a}.Q+N) \to P|Q} \operatorname{React} \qquad \frac{P \to P'}{P|Q \to P'|Q} \operatorname{Par} \qquad \frac{P \to P'}{\operatorname{new} a \ P \to \operatorname{new} a \ P'} \operatorname{Res}$$
$$\frac{\overline{\tau}.P+M \to P}{\overline{\tau}.P+M \to P} \operatorname{Tau} \qquad \frac{Q \equiv P \quad P \to P' \quad P' \equiv Q'}{Q \to Q'} \operatorname{Struct}$$

2.3 Example: Lottery

Suppose we wish to model a lottery. There is a set of N balls with outcomes written on them, and we want to non-deterministically choose a ball, output its outcome, and reset to the initial state. We can use the following definitions:

Lottery =
$$\tau . b_1$$
.Lottery + ... + $\tau . b_n$.Lottery
Main = (Lottery $|\overline{b_1}.P_1| ... |\overline{b_n}.P_n)$

This definition simulates a one-ball lottery. The process Lottery picks a ball *i* and sends the corresponding action b_i , which reacts with the corresponding parallel observer process $\overline{b_i} \cdot P_i$, triggering the appropriate reward process P_i . We could also extend this to a multi-ball lottery by adding more actions to the observer processes: $\overline{b_i} \cdot \overline{b_j} \cdot \overline{b_k} \cdot P_{ijk}$. However, we must take care to avoid having a b_i possibly interact with the wrong $\overline{b_i}$ in a process; i.e., if the second ball drawn is b_i , we don't want that action to react with a process that has $\overline{b_i}$ as its first action.

We can also use the following alternative definitions:

$$\begin{split} A(a, b, c) &= \overline{a}.C\langle a, b, c \rangle \\ B(a, b, c) &= \overline{b}.C\langle a, b, c \rangle \\ C(a, b, c) &= \tau.B\langle a, b, c \rangle + c.A\langle a, b, c \rangle \\ A_i &= A\langle a_i, b_i, a_{i+1} \rangle \\ B_i &= B\langle a_i, b_i, a_{i+1} \rangle \\ C_i &= C\langle a_i, b_i, a_{i+1} \rangle \\ L_1 &= \mathsf{new} \ a_1, a_2, a_3 \ (C_1 | A_2 | A_3) \\ L_2 &= \mathsf{new} \ a_1, a_2, a_3 \ (A_1 | C_2 | A_3) \\ L_3 &= \mathsf{new} \ a_1, a_2, a_3 \ (A_1 | A_2 | C_3) \end{split}$$
 for $i \in \{1, 2, 3\}$, with $3 + 1 = 1$

To see how this works, we start by expanding the definition of L_1 :

$$L_1 = \mathsf{new} \; a_1, a_2, a_3 \; (C_1|A_2|A_3) \equiv \mathsf{new} \; a_1, a_2, a_3 \; (\tau.B\langle a_1, b_1, a_2 \rangle + a_2.A\langle a_1, b_1, a_2 \rangle |A_2|A_3)$$

Thus from L_1 , we can take one of two actions: either τ , or a_2 . In the latter case, we get (after a_2 reacts with $\overline{a_2}$ in A_2):

new
$$a_1, a_2, a_3$$
 $(A\langle a_1, b_1, a_2 \rangle | C\langle a_2, b_2, a_3 \rangle | A_3) \equiv L_2$

In the former case, we get:

new
$$a_1, a_2, a_3$$
 $(b_1.C\langle a_1, b_1, a_2\rangle | A_2 | A_3) \equiv$ new a_1, a_2, a_3 $(b_1.C_1 | A_2 | A_3)$

Once the b_1 reacts with an external observer process, we are left with L_1 . Thus at each of the L_i , we can either draw a ball b_i or transition to L_{i+1} .

3 CCS as an LTS

3.1 Operational Semantics Rules

$$\frac{P \xrightarrow{\lambda} P' \quad Q \xrightarrow{\lambda} Q'}{P|Q \xrightarrow{\tau} P'|Q'} \text{ L-React } \frac{P \xrightarrow{\alpha} P' \quad \alpha \notin \{a, \overline{a}\}}{\operatorname{new} a P \xrightarrow{\alpha} \operatorname{new} a P'} \text{ L-Ress}$$

$$\frac{P \xrightarrow{\alpha} P'}{P|Q \xrightarrow{\alpha} P'|Q} \text{ L-Par L } \frac{Q \xrightarrow{\alpha} Q'}{P|Q \xrightarrow{\alpha} P|Q'} \text{ L-Par R } \frac{\{\vec{b}/\vec{a}\}P_A \xrightarrow{\alpha} P' \quad A(\vec{a}) = P_A}{A\langle \vec{b} \rangle \xrightarrow{\alpha} P'} \text{ L-Ident}$$

There are two important things to notice. The first is that we no longer make use of structural congruence; consequently, we now require separate rules for left- and right-parallel composition, and we need summands on both sides for the L-Sum rule. The second thing to notice is that in the L-React rule, since λ is internal to the process, we label the transition with τ so that λ is hidden from any external processes. Also, we still have α -equivalence for new a P expressions: new $a P = \text{new } b P\{b/a\}$ for any other label b.

3.2 Theorems

First, we want to show that even though we no longer have a structural congruence rule, structural congruence in fact still holds. We therefore have the following theorem:

Theorem 1. If $P \xrightarrow{\alpha} P'$ and $P \equiv Q$, then $\exists Q'$ such that $Q \xrightarrow{\alpha} Q'$ and $Q' \equiv P'$.

Proof. Here is a partial proof, containing only a few subcases. Proof by induction on $P \xrightarrow{\alpha} P'$. Case L-Par L: $P = P_1|P_2, P_1 \xrightarrow{\alpha} P'_1, P' = P'_1|P_2$. Consider $P \equiv Q$. We now look at all of the ways Q could be structurally congruent to P:

Subcase $Q = P_2 | P_1$. Then let $Q' = P_2 | P'_1$. By L-Par R, $Q \xrightarrow{\alpha} Q'$. \checkmark

Subcase $Q = Q_1 | P_2, Q_1 \equiv P_1$. By the induction hypothesis, $\exists Q'_1$ such that $Q_1 \xrightarrow{\alpha} Q'_1, Q'_1 \equiv P_1$. By L-Par L, $Q \xrightarrow{\alpha} Q'_1 | P_2 \equiv P'$. Then let $Q' = Q'_1 | P_2$. \checkmark

We would also like to show that the transitions in this system correspond to those in the original CCS: **Theorem 2.** $P \rightarrow P'$ iff $P \xrightarrow{\tau} \equiv P'$ (where $\xrightarrow{\tau} \equiv$ indicates relational composition of $\xrightarrow{\tau}$ and \equiv).