
.

.

.

.

CS 6112 (Fall 2011)
Foundations of Concurrency
25 October 2011
Scribe: Stephen Long eld

1 Monad Review

In category theory amonad is a triplet, (C, η, µ), containing an endofunctor over categories along with two
natural transformations. The endofunctor over categories, C, takes an input of a value in some category
(for example, integers in the category of sets), and gives an output that is also in that category, therefore,
it has type C : T → T . The two transformations it must de ne are a unit function that maps a value into
the monad (known as η, with type IC → T), and a multiplication function, known as µ, which goes from
a repeated application of the endofunctor to a single, represented as having type T 2 → T or T ◦ T → T .
These transformations must be de ned in such a way that they follow certain coherence properties.

This concept has been adopted by functional programming language designers as a way of decorating
certain data types. These decorations may be things like the Maybe monad, which extends any type to
be a category with the option of being Nothing. In some functional languages, most notably Haskell,
they are also used to augment series execution of functions, to indicating if these functions are allowed
to have “impure” side effects, such as I/O. This allows Haskell programmers to separate functions whose
output will always be the same as for a given input (referentially transparent) from ones whose output may
vary (such as reading from an input buffer). Eugenio Moggi is the Italian researcher who put down the
framework for the use of Monads in a functional language, as was discussed at the Cornell Programming
Languages Discussion Group last year.

1.1 Monads in Haskell

The papers that we are going to be discussing today are both based on the idea of augmenting Haskell with
concurrency monads. Therefore, it will be helpful to review how monads are implemented and how they
are used in Haskell.

InHaskell amonad is a kind of typeclass, a structure not entirely different from a Java Interface, where a
type speci cation is given for several functions that anyone that would like to be members of this typeclass
must satisfy. Additionally, a Haskell typeclass may de ne default implementations of the functions, such
as in the case of the Eq typeclass, where not equals is simply de ned as the boolean negation of equals..

The type speci cation for a Haskell monad is:

class Monad m where
(>>=) :: m a -> (a -> m b) -> m b
return :: a -> m a

The rst operator, (>>=) is known as the ”bind” operator. It takes an argument of type a wrapped in
the monad m, a function which maps from values of type a to values of type b wrapped in monad m, and
returns a value of type b wrapped in the monad m. For example, in the set monad, this would let you take
a set (like, {1, 5}) take a function such as f x = {x, 2x}, and would generate an output of {1, 2, 5, 10}.

1

This is the operator that is used for composing multiple monadic actions in series. It is analogous to the µ
mapping from category theory monads.

The second operator, return, takes a value of type a and wraps it in monad m. For sets of integers, it
would take a single integer and return a set (e.g. return 1 would result in {1}) It is analogous to the η
operator.

1.2 Examples

An example used in the rst paper discussed below is the writer monad. It decorates the result of some
computation with a string, which could be used for logging actions. In the paper it is rst de ned as a
monadic typeclass that de nes a function write, which moves a String into the monad.

class Monad m => Writer m where
write :: String -> m ()

To use the writer monad, we need to create a type which is an instance of this typeclass. This instance
must also be an instance of the monad typeclass. In the paper, this instance was called W.

type W a = (a, String)

instance Monad W where
(a, s) >>= k = let (b, s') = k a in (b, s++s')
return x = (x, "")

instance Writer W where
write s = ((), s)

What the above code does is to declare a new type named W that takes an argument of some arbitrary
type a, and creates a type (a, String). It then makes this type an instance of the monad typeclass, where
the bind operator when given a pair of some value (a, s) and a function k applies k to the value a, extracts
the result as (b, s'), and then returns (b, s++s'), where ++ is the Haskell concatenation operator.

The return operator is much simpler, simply taking in some value x, and returning a pair with that
value and the empty string. This type W is also made into an instance of the Writer typeclass, where the
write function returns a pair with the unit type, (), and the input string.

To use this monadwe need one additional construct: a run function. For the writer monad, this consists
of extracting the string and tossing away the value that was computed. In Haskell, this is not atypical, as
we’re often more interested in a monad’s side effects than the actual value that it contains. Here, that
function is called output and is de ned as:

output :: W a -> String
output (a, s) = s

This monad can then be used to compose several functions together, and make notes about their inter-
mediate state. This can be done in two separate ways. Most directly, the bind operator can be used to string
several functions together. However, more readably, you can use Haskell do syntax, where statements can
contain bindings to variables which will be passed to subsequent statements.

For example, the following two code segments represent equivalent functionality, but the one written
in do notation looks more natural, and does not require every line to be made into an anonymous function
(done here with the backslash operator, a Haskell operator chosen since it looks somewhat similar to λ, but
can be typed by a standard keyboard).

2

expr1 >>= \x -> do x <- expr1
expr2 >>= _ -> ; expr2
expr3 >>= \y -> ; y <- expr3
return expr4 ; return expr4

2 Functional Pearls: A Poor Man’s Concurrency Monad

This paper describes the implementation of a concurrency monad entirely within the language of Haskell
without the addition of any language features. In the paper, the bind operator, >>= is represented by ⋆,
however in these notes, I will be representing it as >>= for the sake of consistency with the way Haskell is
typically input.

The ”Functional Pearls” in the title of this paper refers to a class of paper. These papers are designed
to be accessible and well-written documents discussing an interesting technique or methodology. They are
not required to be ground-breaking when they are published, but due to the cleverness of the ideas that
they discuss, and the level of accessibility they are designed for, they are almost always worth reading.

To build the concurrency monad, this paper creates a Monad transformer. A monad transformer takes
in a monad of one type, and then creates a monad of another type. For instance, if you wanted to take a
value you got from an I/O operation, and perform an analysis on it which might fail, you could do this by
creating a monad that has the properties of both the IO monad and the Maybe monad. In this paper, we’ll
be discussing amonad transformer called C, which allows anymonadic action lifted into it to be considered
as atomic in concurrent operations.

As the author of this paper decided he would not add any primitives to the language, the model of
concurrency created does not actually exhibit actual concurrency, but instead interleaves the execution of
several monadic operators. To do this, it needs to have some way to suspend the operation. This is being
done with continuations, where each computation is given a place to go once its computation is done, and
can postpone going to that location. We can think of the continuation as the ”future” of the computation.
To think of that in the typesystem, if we have some computation with the type of Action m (where m is
some monad), a function that uses a continuation with result type a has the type:

type C m a = (a -> Action m) -> Action m

Given that, the monad transformer C is de ned as:

instance Monad m => Monad (C m) where
f >>= k = \c -> f (\a -> k a c)
return x = \c -> c x

To understand this, we can look at the types of the different operators and think about the kinds of
types we would like to get out.

The simplest one is rst, the return operator. We would like to give it a value of some type a, and have
it return a type of C m a. To do this, all we have to do is to take a continuation and call it.

The bind operator is much more complicated. We’d like to take a value of C m a (or (a -> Action
m) -> Action m)), a function of type a -> C m B (or a -> (B -> Action m) -> Action M),
and return a value of C m B, (or (B -> Action m) -> Action m)). To do this, we’ll be using some
anonymous functions to take in continuations and apply them to actions in order to expose their values.
Below is the bind operator with type annontations:

3

f:((a -> Action m)->Action m) >>= k:(a->(B->Action m)->Action m)) =
\c : (B -> Action m) -> f (\a : (a) . k a c)

The paper then de nes the speci cs of the Action operator type, which is one of an Atomic action
inside themonad (Atom), a fork operation, which forks off two different actions (Fork) and a stop operation,
which ends the current thread of execution (Stop). These three different kinds of actions provide all of the
primitives needed for a basic implementation of concurrency.

Because the concurrency design in this paper isn’t actual parallel concurrency made with separate
threads, it requires a scheduler in the language to take Actions and execute them one at a time. The exam-
ple given in the paper is a round-robin scheduler, where a stack of executable processes is maintained, with
a single element being popped off of it at a time. If an Atomic action is popped off, it is allowed to execute
one step, and then its continuation is put back on the bottom of the stack. If a fork action is popped off,
it is split into two actions, which are placed on the bottom. When a stop action is popped off, it is simply
allowed to die.

In the paper, the round robin scheduler is used in conjunction with the writer monad, to provide for
interleaved output. Two examples are shown, one where doing the entire printing action is lifted as an
atomic action (and hence, the interleaving happens at the string level), and another where each character
print is lifted as an atomic action, causing the interleaving to happen at that level.

3 Combining Events and Threads for Scalable Network Services

This paper is an extension of the work from the previous paper, however, its implementation of a concur-
rencymonad uses language features to allow for actual parallel execution. It continues to use a cooperative
execution model, and use lazy execution of continuations to allow for interruption.

This paper claims that the model of concurrency it uses elegantly bridges the gap between thread-
based and event-based parallelism. This is the same goal that the Actor abstraction discussed on the 20th
of October had. Thread-based execution is typically considered to interface with shared memory, and have
no control over when preemption may occur. Event-based parallelism must set up waits for each action
that it would like to respond to, andwait for that event to occur before they run, whichmaymake reasoning
about control ow dif cult. This paper proposes a hybrid model that allows programmers to write in the
somewhat more natural threaded style, but with the thread scheduler allowing for event handlers.

The reason the paper cites for choosing the hybrid model is actually the similarity of the two models.
In 1978 Lauer and Needham described a mapping between Threads and Events, which argued that fun-
damentally, they are the same, though they may be interfaced with and implemented differently. During
class discussion, there were some disagreements with the exact duality, but some of the points still stood.
In the paper, they chose to hybridize by using thread abstractions to represent control ow, and event ab-
stractions to provide scheduling control. In particular, they used continuation-passing-style (CPS) event
handlers to blend control and scheduling ow. This model was implemented in Haskell usingmonadic op-
erators in a similar way to the Claessen paper above. The main difference is the scheduler allows for true
parallelism, instead of just interleaving of operations. Exceptions are handled through the continuations.

4

