
.

.

.

.

CS 6112 (Fall 2011)
Foundations of Concurrency
13 October 2011
Scribe: Mark Reitblatt

1 Chemical Abstraction Machine

The Chemical Abstract Machine (CHAM) is a model of computation for concurrent calculi.
“Intuitively, the state of a system is like a chemical solution in which the áoating molecules can interact

with each other according to reaction rules; a magical mechanism stirs the solution, allowing for possible
contacts between molecules”

Reaction rules are static, speciàed before computation. The reaction rules specify the signature of con-
current calculus we are modeling. We can think of the rules as catalysts of reactions, and also as placeswhere
molecules must travel to react.

Unfortunately, specifying a àxed set of reaction rules at the beginning of the computation limits how
we can model calculi.

• All communication is constrained to the àxed set of reaction sites. “Catalysts are bottlenecks”

• All pattern matching in the core calculus must be in the àxed set of rules, which may complicate
dynamic elements of matching. “Catalysts clog up”

1.1 Reýexive CHAM

To solve both of these problems, we permit molecules to add new reactions to their environment. This gives
us the Reáexive CHAM.

Reáexive CHAM processes P are either:

• An emission of an asynchronous polyadic message x⟨v⃗⟩

• A deànition of new names def D in P

• A parallel composition of processes P | P

A join-pattern J consists of:

• Receipt of an asynchronous polyadic message x⟨v⃗⟩

• Parallel composition of joins J | J

A deànitionD consists of:

• An elementary deànition that match patterns to guarded processes J ◃ P

• A conjunction of deànitionsD ∧D

1

Names that appear in a process P may be captured by an enclosing deànition. The only binder is the
join pattern J , but the scope of its names depeds on their position in messages. The formal parameters that
are received are bound in the correspond guarded process. The deàned port names are bound in the whole
deàning process, that is, the main process and recursively all the guarded processes. Received variables
rv(J), deàned variables dv(D), and free variables fv(D) and fv(P) are speciàed by structural induction.
Notice the syntactic restriction for processes: No received variable may appear twice in the same pattern
J . This rules out any comparison on names, and guarantess that join patterns are linear.

rv(x⟨v⃗⟩) , {u ∈ v⃗} rv(J | J ′) , rv(J) ⊎ rv(J ′)

dv(x⟨v⃗⟩) , {x} dv(J | J ′) , dv(J) ∪ dv(J ′)

dv(J ◃ P) , {dv(J) dv(D ∧D′) , dv(D) ∪ dv(D′)

fv(J ◃ P) , dv(J) ∪ (fv(P)− rv(J)) fv(D ∧D′) , fv(D) ∪ fv(D′)

fv(x⟨v⃗⟩) , {x} ∪ {u ∈ v⃗} fv(def D in P) , (fv(P) ∪ fv(D))− dv(D) fv(P | P ′) , fv(P) ∪ fv(P ′)

Rules operate on solutions R ⊢ M consisting of a multiset M of molecules (active processes) and a
multisetR of reactions (active deànitions). There are reversible structural “heating/cooling” rules (
) and
one irreversible reaction rule (→).

R ⊢ M, P | Q
 R ⊢ M, P,Q

R, D ⊢ E ⊢ M
 R, D,E ⊢ M
R ⊢ M, def D in P
 R, Dσdv ⊢ M, Pσdv

R, J ◃ P ⊢ M, Jσrv → R, J ◃ P ⊢ M, Pσrv

Side Conditions:

• dom(σdv) ⊆ dv(D) and substitutes for these variables distinct, fresh names. Freshmeans rng(σdv)∩
(fv(R∪ fv(M∪ fv(def D in P)) =

• dom(σRv) ⊆ rv(J)

2 Join-Calculus

We can think of the CHAM as a computational model derived from process calculi like the π-calculus. We
can also go in the opposite direction and produce a process calculus, the join-calculus, from the reáecive
CHAM. The terms of the join calculus are just the molecules of the reáexive CHAM, and the structural
equivalence and transition rules correspond to the reaction rules of the CHAM.

2

However, we’re going to look at a smaller version of the full join calculus, the core join calculus. It turns
out that we lose no expressive power.

P ::= x⟨u⟩ | (P1|P2) | def (x⟨u⟩|y⟨v⟩ ◃ P1) in P2

The join calculus includes a structural congruence relation (≡)

P |Q ≡ Q|P
P |(Q|R) ≡ (P |Q)|R

P |def D inQ ≡ def D in P |Q
def D in def D′ in P ≡ def D′ in def D in P

P ≡α P ′ =⇒ P ≡ P ′

P ≡ Q =⇒ (P |R) ≡ (Q|R)

R ≡ S, P ≡ Q =⇒ def J ◃ R in P ≡ def J ◃ S inQ

Semantics are given by a labelled transition relation
δ→ where δ ranges over D ∪ {τ}. The relation is

the smallest such that

• ForallD = x⟨u⟩|y⟨v⟩ ◃ R, we have x⟨s⟩|y⟨t⟩ D→ R[s/x, t/y]

• If P
δ→ P ′, then

– P |Q δ→ P ′|Q

– def D in P
δ→ def D in P ′ (if fv(D) ∩ dv(δ) =)

– def δ in P
τ→ def δ in P ′ (if δ ̸= τ)

– Q
δ→ Q′ (if P ≡ Q and P ′ ≡ Q′)

2.1 The Join-Calculus and the Reýexive CHAM

Lemma 1. The structurual congruence ≡ is the smallest congruence that contains all pairs of processes P,Q such
that ⊢ P
∗⊢ Q. The silent transition relation

τ→ contains exactly the pairs of processes P,Q up to ≡ such that
⊢ P →⊢ Q

2.2 Encodings in the Join-Calculus

2.2.1 CBN Lambda Calculus

JxKv := x⟨v⟩Jλx.T Kv := def κ⟨x,w⟩ ◃ JT Kw in v⟨κ⟩JTUKv := def x⟨u⟩ ◃ JUKu in def w⟨κ⟩ ◃ κ⟨x, v⟩ in JT Kw
The interpretation JT Kv means that T should send its value on channel v. A value is a channel κwhich,

if sent ⟨x,w⟩, uses x to look up an argument and sends the result of applying itself to the argument on w.
To lookup the value of x, send z to x, and the value of xwill be sent on z.

3

2.2.2 Parallel CBV Lambda Calculus

JxKv := v⟨x⟩Jλx.T Kv := def κ⟨x,w⟩ ◃ JT Kw in v⟨κ⟩JTUKv := def t⟨κ⟩|u⟨w⟩ ◃ κ⟨w, v⟩ in JT Kt|JUKu
This differs in that instead of sending a channel which serves up the unreduced argument, we send the

actual argument in the ’application request’. We can do this in the deànition of application because wewait
until both of the terms in the application have converged to a value.

3 Join-Calculus and the π-calculus

We can think of the join calculus as an asynchronous version of the π-calculus, except with restrictions:

• All binding happens with one construct, the deàntion.

• Synchronization only happens with deàned names; processes cannot pass messages over free names.
Even though one canwrite on a channelwith a free name, communication only occurswhen a deàned
rule executes.

• For every deànedname, there is exactly one replicated read. Ifwe think of the calculus in a distributed
setting, this means that for every deàned name, there is exactly one place here synchronization can
occur for that name.

3.1 Asynchronous π-calculus in Join-Calculus

P ::= (P |Q) | new u in P | x̄⟨u⟩ | x(u).P |!x(u).P

Naive representation of the π-calculus

JP |QKπ := JP Kπ|JQKπJnew x in P Kπ := def xo⟨vo, vi⟩|xi⟨κ⟩ ◃ κ⟨vo, vi⟩ in JP KπJx̄⟨v⟩Kπ := xo⟨vo, vi⟩Jx(v).P Kπ := def κ⟨vo, vi⟩ ◃ JP Kπ in xi⟨κ⟩J!x(v).P Kπ := def κ⟨vo, vi⟩ ◃ xi⟨κ⟩|JP Kπ in xi⟨κ⟩

But this translation doesn’t quite work. For instance, Jx̄⟨a⟩|x̄⟨b⟩|x(u).ȳ⟨u⟩Kπ is stuck, even though
x̄⟨a⟩|x̄⟨b⟩|x(u).ȳ⟨u⟩ is not stuck in the π-calculus. This is because we have no enclosing new x in . . . to
provide the deànition that allows synchronization to occur.

Additionally, this encoding is not fully abstract in the sense that it is not robust given an arbitrary
concurrent context that the encoded process lives in. Even if we make sure all of our free names have been
appropriately deàned, a channel we are reading on might be written to by some malicious process, with
the message being a free name. Again, if we try to do anything to that free name, we become stuck.

We use a tool called the equator to àx this problem.

Mπ
x,y :=!x(u).ȳ⟨u⟩|!y(u).x̄⟨u⟩

4

This is an asynchronous π-calculus programwhich conáates the two channels x and y. IfMπ
x,y is in the

’solution’, then no process can tell the difference between them.
To protect the translation from hostile contexts, the encoding must set-up a “àrewall” that enforces

the protocol. We reàne our àrst approach: each channel x is now represented as several pairs xo, xi from
the naive encoding that cannot be distinguished from the outside. Two pairs are merged by repeatedly
communicating their pending messages to one another. New pairs are deàned at run-time according to the
following secure protocol:

• Whenever a pair of names is received from the outside, the àrewall deànes a new, correct proxy pair,
merges it to the external pair, and transmits the new pair instead

• Whenever a pair of names is sent to the outside, a new àrewall is inserted to set up proxies for future
messages on this pair

We use the following contexts to build the àrewall on top of the naive translation:

Px[P] := def xi⟨vo, vi⟩|xi⟨κ⟩ ◃ κ⟨vo, vi⟩ in def xo⟨vo, vi⟩ ◃ p⟨vo, vo, xi⟩ in P

Ex[P] := Px[xe⟨xo, xi⟩|P]

M[P] := def p(xo, xi, κ) ◃ Py[κ⟨yo, yi⟩|JMπ
x,yKπ] in P

E [P] := M[Ex1 [. . . Exn [P] . . .]] for x1, . . . , xn = fv(P)

For every free name x, Px encodes the creation of a new proxy for its output. Ex does the same, and
also exports the proxy on a conventional free name xe. Finally,M deànes the proxy creator p for the whole
translation.

Full Abstraction theorem:

Theorem 1. Q ≈π R ⇐⇒ E [JQKπ] ≈ E [JRKπ]
3.2 Join-Calculus in π-Calculus

Naive representation of the Join-Calculus

JP |QKj := JP Kj |JQKjJx⟨v⟩Kj := x̄⟨v⟩Jdef x⟨u⟩|y⟨v⟩ ◃ P inQKk := new x, y in ((!x(u).y(v).JP Kj)|JQKj)
But this translation, like the previous one, is not robust up to arbitray contexts. We use a similar trick

as before. We deàne a relay process and àrewall deànitions

Rx,y :=!x(v).new ve in r̄⟨ve, v⟩|ȳ⟨ve⟩
R[P] := new r in (!r(x, xe).Rx,xe |P)

Eπ
x [P] := new x in (Rx,xe |P)

Eπ[P] := R[Eπ
x1
[. . . Eπ

xn
[P] . . .]] for x1, . . . , xn = fv(P)

Full Abstraction theorem:

Theorem 2. P ≈ Q ⇐⇒ Eπ[JP Kj] ≈π Eπ[JQKj]
5

