

1 Bi-simulation and congruency in π-calculus

$$
\begin{aligned}
\pi & ::=\bar{x} y|x(z)| \tau \mid[x=y] \pi \\
P & ::=M\left|P_{1}\right| P_{2}|\nu x P|!P \\
M & ::=0|\pi . P| M_{1}+M_{2}
\end{aligned}
$$

We write labeled transitions for processes as $P \xrightarrow{\alpha} P^{\prime}$ where α is taken from

$$
\alpha::=\bar{x} y|x(z)| \bar{x}(z) \mid \tau
$$

$\bar{x}(z)$ is a "bound send" and is used to identify when scope extrusion occurs.
1.1 LTS Operational semantics

$$
\begin{gather*}
\bar{x} y \cdot P \xrightarrow{\bar{x} y} P \tag{Out}\\
x(z) \cdot P \xrightarrow{x(y)} P\left[{ }^{y} / z\right] \tag{InP}\\
\tau \cdot P \xrightarrow{\tau} P \tag{TAU}\\
\frac{P \xrightarrow{\alpha} P^{\prime}}{P+Q \xrightarrow{\alpha} P^{\prime}} \tag{Sum-L}\\
\frac{Q \xrightarrow{\alpha} Q^{\prime}}{P+Q \xrightarrow{\alpha} Q^{\prime}} \\
\frac{\pi \cdot P \xrightarrow{\alpha} P^{\prime}}{[x=x] \pi \cdot P \xrightarrow{\alpha} P^{\prime}} \\
\xrightarrow{\alpha} P^{\prime} \alpha=\bar{x}(z) \Longrightarrow x \notin f v(Q) \tag{Par-L}\\
P\left|Q \xrightarrow{\alpha} P^{\prime}\right| Q \tag{Par-R}\\
\xrightarrow[\longrightarrow]{\alpha} Q^{\prime} \quad \alpha=\bar{x}(z) \Longrightarrow x \notin f v(P) \\
P|Q \xrightarrow{\alpha} P| Q^{\prime}
\end{gather*}
$$

$$
\begin{aligned}
& \frac{P \xrightarrow{\alpha} P^{\prime} \quad z \notin \operatorname{names}(\alpha)}{\nu z P \xrightarrow{\alpha} \nu z P^{\prime}} \\
& \xrightarrow[{P\left|Q \xrightarrow{P} P^{\bar{x} y} P^{\prime}\right| Q^{\prime}}]{\xrightarrow{x(y)} Q^{\prime}} \\
& \xrightarrow[{P\left|Q \xrightarrow{\tau} P^{\prime}\right| Q^{\prime}}]{P \xrightarrow{x(y)} P^{\prime} \quad Q \xrightarrow{\bar{x} y} Q^{\prime}} \\
& \frac{P \xrightarrow{\bar{x} z} P^{\prime}}{\nu z P \xrightarrow{\bar{x}(z)} P^{\prime}} \\
& \frac{P \xrightarrow{\bar{x}(z)} P^{\prime} \quad Q \xrightarrow{x(z)} Q^{\prime}}{P \mid Q \xrightarrow{\tau} \nu z\left(P^{\prime} \mid Q^{\prime}\right)} \\
& \frac{P \xrightarrow{x(z)} P^{\prime} \quad Q \xrightarrow{\bar{x}(z)} Q^{\prime}}{P \mid Q \xrightarrow{\tau} \nu z\left(P^{\prime} \mid Q^{\prime}\right)} \\
& \frac{P \xrightarrow{\alpha} P^{\prime}}{!P \xrightarrow{\alpha} P^{\prime} \mid!P} \\
& \xrightarrow{P \xrightarrow{\bar{x} y} P^{\prime} \quad P \xrightarrow{x(z)} P^{\prime \prime} \quad z \notin f v(P)} \underset{!P \xrightarrow{\tau}\left(P^{\prime} \mid P^{\prime \prime}\right) \mid!P}{\text { P }} \\
& \frac{P \xrightarrow{\bar{x}(z)} P^{\prime} \quad P \xrightarrow{x(z)} P^{\prime \prime} \quad z \notin f v(P)}{!P \xrightarrow{\tau}\left(\nu\left(P^{\prime} \mid P^{\prime \prime}\right)\right) \mid!P}
\end{aligned}
$$

Fact For any P and α the set $\left\{P^{\prime} \mid P \xrightarrow{\alpha} P^{\prime}\right\}$ is finite.
Lemma 1 (Harmony). $P \longrightarrow P^{\prime} \Longleftrightarrow P \xrightarrow{\tau} \equiv P^{\prime}$
Fact \longrightarrow is not image finite.
The primary issue is the ! operator $-!P$ may be expanded infinitely. Noting that $!P \equiv P \mid!P$, we can extend our notion of image finiteness to include 'up-to structural congruence'.

1.2 Reduction Bisimilarity

Definition 1 (Reduction bi-similarity). Reduction bi-similarity is the largest symmetric relation S such that whenever $P S Q$ and $P \longrightarrow P^{\prime}$ we have $Q(\longrightarrow S) P^{\prime}$

This definition is somewhat unsatisfying, however. For instance, under this definition, $\bar{x} y .0$ and 0 are regarded as equivalent.

Definition 2 (Reduction congruence). Two processes P and Q are reduction congruent if $C[P]$ and $C[Q]$ are reduction bi-similar for any context C.

P	Q	Congruent?	Context
$\bar{x} a .0$	$\bar{y} a .0$	No	$C=[\cdot] \mid x(z) .0$
$\bar{a} x .0$	$\bar{a} y .0$	No	$C=[\cdot] \mid a(z) \cdot(\bar{z} b \mid y(w))$
			$C[P]=\bar{a} x \mid a(z) .(\bar{z} b \mid y(w))$
			$\longrightarrow(\bar{x} b \mid y(w))$
			$C[P]=\bar{a} y \mid a(z) .(\bar{z} b \mid y(w))$
$!\tau .0$	$(R \mid!\tau .0)$	Yes!	

We can't distinguish transitions and ! $\tau .0$ can always step. This might feel familiar to "termination equivalence" in λ-calculus.

1.3 Observations

We write $P \downarrow x$ if P can perform input on x in the LTS. We write $P \downarrow \bar{x}$ if P can perform output on x in the LTS.

Definition 3 (Strong barbed bi-similarity). Strong-barbed bi-similarity is the largest symmetric relation $\dot{\sim}$ such that whenever $P \dot{\sim} Q$:

- $P \downarrow \mu$ implies $Q \downarrow \mu$
- $P \xrightarrow{\tau} P^{\prime}$ implies $Q \xrightarrow{\tau} \dot{\sim} P^{\prime}$

Facts $\dot{\sim}$ is:

- an equivalence
- preserved under prefixes, sum, and restriction
- $\equiv \subseteq \dot{\sim}$ (Structural congruence implies $\dot{\sim}$)

Example

$$
\begin{array}{lc}
P= & \bar{x} y . \bar{a}\langle \rangle \\
Q= & \bar{x} y .0 \\
C= & {[\cdot] \mid x(z) .0}
\end{array}
$$

Definition 4 (Strong-barbed congruence). P and Q are strong barbed congruent, written \simeq_{c} iff $C[P] \dot{\sim}$ $C[Q]$ for any C.

Fact $: \simeq_{c}$ is the largest congruence included in $\dot{\sim}$, therefor $\equiv \subseteq \simeq_{c}$.
Lemma 2 (Context Lemma). $P \simeq_{c} Q \Longleftrightarrow P \sigma|R \dot{\sim} Q \sigma| R$ for any σ, R.
Definition 5 (Strong-barbed equivalence). $P \simeq Q \stackrel{\Delta}{\Longleftrightarrow} P|R \dot{\sim} Q| R$

Example The following example helps distinguish strong barbed congruence and strong barbed equivalence.

$$
\begin{array}{lc}
P= & \bar{z} \mid a \\
Q & = \\
\bar{z} \cdot a+a \cdot \bar{z}
\end{array}
$$

It should be clear that P and Q are strong barbed equivalent - no matter what R we compose them with, at most two tau transitions are possible and the same observations (barbs) hold throughout.

However, P and Q are not strong barbed congruent. To see this, pick C to $x(z) \cdot[\cdot]]) \mid \bar{x}\langle a\rangle$. Putting the hole [.] under a receive of z on x causes the substitution $[a / z]$ to be applied to in the process plugged into the hole during evaluation. This enables the two proceses composed in parallel on the P side to interact with each other while the Q side, no such interaction is possible. This also explains the critical role of the substitution in the Context Lemma - the context C constructed above essentially plays the role of the substitution $[a / z]$.

