
.

.

.

.

CS 6112 (Fall 2011)
Foundations of Concurrency
4 October 2011
Scribe: Owen Arden

1 Bi-simulation and congruency in π-calculus

π ::= x̄ y | x(z) | τ | [x = y]π

P ::= M | P1|P2 | νxP |!P
M ::= 0 | π.P | M1 +M2

We write labeled transitions for processes as P
α−→ P ′ where α is taken from

α ::= x̄ y | x(z) | x̄(z) | τ

x̄(z) is a “bound send” and is used to identify when scope extrusion occurs.

1.1 LTS Operational semantics

x̄ y.P
x̄y−→ P (O)

x(z).P
x(y)−→ P [y/z] (IP)

τ.P
τ−→ P (T)

P
α−→ P ′

P +Q
α−→ P ′

(S-L)

Q
α−→ Q′

P +Q
α−→ Q′

(S-R)

π.P
α−→ P ′

[x = x]π.P
α−→ P ′

(M)

P
α−→ P ′ α = x̄(z) =⇒ x /∈ fv(Q)

P | Q α−→ P ′ | Q
(P-L)

Q
α−→ Q′ α = x̄(z) =⇒ x /∈ fv(P)

P | Q α−→ P | Q′
(P-R)

1

P
α−→ P ′ z /∈ names(α)

ν z P
α−→ ν z P ′

(R)

P
x̄y−→ P ′ Q

x(y)−→ Q′

P | Q τ−→ P ′ | Q′
(C-L)

P
x(y)−→ P ′ Q

x̄y−→ Q′

P | Q τ−→ P ′ | Q′
(C-R)

P
x̄z−→ P ′

ν z P
x̄(z)−→ P ′

(O)

P
x̄(z)−→ P ′ Q

x(z)−→ Q′

P | Q τ−→ ν z (P ′ | Q′)
(C-L)

P
x(z)−→ P ′ Q

x̄(z)−→ Q′

P | Q τ−→ ν z (P ′ | Q′)
(C-R)

P
α−→ P ′

!P
α−→ P ′ |!P

(R-A)

P
x̄y−→ P ′ P

x(z)−→ P ′′ z /∈ fv(P)

!P
τ−→ (P ′ | P ′′) |!P

(R-C)

P
x̄(z)−→ P ′ P

x(z)−→ P ′′ z /∈ fv(P)

!P
τ−→ (ν(P ′ | P ′′)) |!P

(R-C)

Fact For any P and α the set {P ′ | P α−→ P ′} is nite.

Lemma 1 (Harmony). P −→ P ′ ⇐⇒ P
τ−→≡ P ′

Fact −→ is not image nite.
The primary issue is the ! operator – !P may be expanded in nitely . Noting that !P ≡ P |!P , we can
extend our notion of image niteness to include ’up-to structural congruence’.

1.2 Reduction Bisimilarity

De nition 1 (Reduction bi-similarity). Reduction bi-similarity is the largest symmetric relation S such that
whenever P S Q and P −→ P ′ we have Q(−→ S) P ′

This de nition is somewhat unsatisfying, however. For instance, under this de nition, x̄y.0 and 0 are
regarded as equivalent.

De nition 2 (Reduction congruence). Two processes P and Q are reduction congruent if C[P] and C[Q]
are reduction bi-similar for any context C .

2

P Q Congruent? Context

x̄a.0 ȳa.0 No C = [·] | x(z).0
āx.0 āy.0 No C = [·] | a(z).(z̄b | y(w))

C[P] = āx | a(z).(z̄b | y(w))
−→ (x̄b | y(w))

C[P] = āy | a(z).(z̄b | y(w))
−→ (ȳb | y(w))

!τ.0 (R |!τ.0) Yes!

We can’t distinguish transitions and !τ.0 can always step. This might feel familiar to “termination equiva-
lence” in λ-calculus.

1.3 Observations

We write P ↓ x if P can perform input on x in the LTS. We write P ↓ x̄ if P can perform output on x in the
LTS.

De nition 3 (Strong barbed bi-similarity). Strong-barbed bi-similarity is the largest symmetric relation
.∼ such that whenever P

.∼ Q:

• P ↓ µ implies Q ↓ µ

• P
τ−→ P ′ implies Q

τ−→ .∼ P ′

Facts
.∼ is:

• an equivalence

• preserved under pre xes, sum, and restriction

• ≡⊆ .∼ (Structural congruence implies
.∼)

Example

P = x̄y.ā⟨⟩
Q = x̄y.0

C = [·] | x(z).0

De nition 4 (Strong-barbed congruence). P and Q are strong barbed congruent, written ≃c iff C[P]
.∼

C[Q] for any C .

Fact : ≃c is the largest congruence included in
.∼ , therefor ≡⊆≃c.

Lemma 2 (Context Lemma). P ≃c Q ⇐⇒ Pσ | R .∼ Qσ | R for any σ,R.

De nition 5 (Strong-barbed equivalence). P ≃ Q
△⇐⇒ P | R .∼ Q|R

3

Example The following example helps distinguish strong barbed congruence and strong barbed equiva-
lence.

P = z̄ | a
Q = z̄.a+ a.z̄

It should be clear that P and Q are strong barbed equivalent – nomatter what Rwe compose themwith,
at most two tau transitions are possible and the same observations (barbs) hold throughout.

However, P and Q are not strong barbed congruent. To see this, pick C to x(z).[·]])|x̄⟨a⟩. Putting the
hole [·] under a receive of z on x causes the substitution [a/z] to be applied to in the process plugged into
the hole during evaluation. This enables the two proceses composed in parallel on the P side to interact
with each other while the Q side, no such interaction is possible. This also explains the critical role of
the substitution in the Context Lemma – the context C constructed above essentially plays the role of the
substitution [a/z].

4

