

1 Readings

The readings for today were:

- Eventually Consistent Transactions, by Sebastian Burckhardt, Manuel Fähndrich, Daan Leijen and Mooly Sagiv, available at
http://research.microsoft.com/pubs/155638/msr-tr-2011-117.pdf
- Transactional Boosting: A Methodology for Highly-Concurrent Transactional Objects, by Maurice Herlihy and Eric Kosniken, available at http://www.cl.cam.ac.uk/~ejk39/papers/boosting-ppopp08.pdf
- Coarse-Grained Transactions, by Eric Koskinen, Matthew Parkinson and Maurice Herlihy, available at http://www.cl.cam.ac.uk/~ejk39/papers/cgt.pdf
Most of the discussion was based on this last paper.

2 Skew heaps

2.1 Definitions

Let us start with an example: parallelizing insertions in skew heaps.
A skew heap (http://en.wikipedia.org/wiki/Skew_heap) is a heap data structure implemented as a binary tree. It is defined recursively as:

- A heap with only one element is a skew heap;
- The result of skew merging two skew heaps is also a skew heap.

Let us just describe how to insert one element e into a skew heap h with root p, whose subtrees are l on the left and r on the right; the general merge of two heaps can be found on Wikipedia:

- inserting e into an empty heap just results in the heap with just that element;
- if $e>p$, the resulting heap has root p, its left subtree is the result of recursively inserting e in r, and its right subtree is l. Note how we swapped r and l in the process;

- if $e<p$, the resulting heap has e as a root, its left subtree is the result of inserting p in r and its right subtree is l.

Remark: What we said in class does not seem to match the Wikipedia article. For wikipedia, the resulting heap has root e, with the original heap h as its left subtree and an empty right subtree.

Now suppose we have the following heap and two concurrent threads, A adding 2 to it, and B adding 6 to it. Several solutions are possible.

2.2 Global lock

The first solution is to use a global lock on the heap. This is not so nice because it is slow: you have to wait for one insertion to complete before the next one can start.

2.3 Local locks

The second solution is to use a fine grain locking procedure: use one lock per node, and acquire and release the locks as we traverse the tree. Here is an example of an execution using such a procedure:
Thread A

- Acquire lock for node 0
- Swap children of 0

- Release lock for node 0
- Acquire lock for node 1 - Acquire lock for node 0
- Insert 2 into $1 \quad$ - Swap left and right children of 0

$$
\text { - Insert } 6 \text { into } 3
$$

This performs relatively well, but it is hard to write and get right.

2.4 Transactions

We could also use transactions, but in the previous examples, here is what would happen:

Thread A	Thread B
- Read 0	- Read 0
- Write $0 .\{L, R\}$	- Write $0 .\{L, R\}$
\vdots	\vdots

We will get a conflict when committing, and one of the threads will have to be rolled back. It hinders concurrency, even though it is efficient for the programmer.

Here is one more example: imagine trying to insert a few single-digit numbers and 6000 into a huge heap. The insert of a single-digit number has a short log, and will always try to commit first. The insert of 6000 , on the other hand, will always get rolled back. If trying to parallelize it with several insertions of single-digit numbers, it will only actually happen at the very end.

3 Coarse-Grained Transaction

We now focus on Maurice Herlihy and Eric Koskinen's work, and especially their POPL'10 paper CoarseGrained Transactions.

The basic idea is to have a transaction mechanism that is convenient to programmers but does not have the big conflicts that normal transactions generate.

Example 1.

```
global SkipList Set;
T1 : atomic {
    Set.add(5);
    Set.remove(3);
}
T2 : atomic {
    if(Set.contains(6)){
        Set.remove(7);
    }
}
```

In this example using a fine-grained synchronization technique would produce a conflict, because adding 5 and removing 7 will read or write the same memory locations. However at a coarse-grained level, these operations commute with each other as soon as their arguments are distinct.

We will consider two execution semantics:

- Pessimistic Execution Semantics (section 3.1 of the paper) prevent conflicts by checking if there will be a conflict before doing anything. They are called pessimistic because they act like there will always be a conflict.
- Optimistic Execution Semantics (section 3.2 of the paper) detect conflicts afterwards: they copy the initial state, and roll back if there is a conflict when committing. They are called optimistic because they act hoping that there will not be a conflict.

3.1 Syntax

The language is given by:

$$
\begin{aligned}
c & ::=c ; c|e:=e| \text { if } b \text { then } c \text { else } c \\
s & ::=s ; s|c| \mathrm{beg} ; t ; \text { end } \\
t: & :=t ; t|c| o . m
\end{aligned}
$$

beg; t; end is the syntax for a transaction. $o . m$ represents a method call m on a shared object o. Note that the syntax purposely makes nested transactions impossible.

The semantics is a labeled transition system, with transitions

$$
T, \sigma_{\mathrm{sh}} \xrightarrow{\alpha} A T^{\prime}, \sigma_{\mathrm{sh}}^{\prime}
$$

where T is a set of transactions $t, \sigma_{\text {sh }}$ is a global state, i.e., a finite map from object ids to objects. $\alpha \in$ $\perp \cup(\mathbb{N} \times(o . m \cup\{$ beg, end, cmt $\}))$ is a label. beg is short for begin, and cmt is short for commit. A just means atomic.

Each transaction is a tuple $\langle\tau, p\rangle$, where τ is a transaction identifier and p is the program text for the transaction.

The abridged atomic semantics is given by:

$$
\begin{aligned}
& \overline{\left(\left\langle\tau, c ; c^{\prime}\right\rangle \cup T\right), \sigma_{\mathrm{sh}}{ }^{\perp} A\left(\left\langle\tau, c^{\prime}\right\rangle \cup T\right), \llbracket c \rrbracket \sigma_{\mathrm{sh}}} \\
& \frac{\alpha=(\tau, \text { beg }) \cdot \alpha^{\prime} \cdot(\tau, \text { end }) \cdot(\tau, \text { cmt }) \quad \tau \text { fresh } \quad(\langle\tau, t\rangle \cup T), \sigma_{\text {sh }}{\xrightarrow{\alpha^{\prime}} *}_{*}^{*}(\langle\tau, \text { skip }\rangle \cup T), \sigma_{\text {sh }}^{\prime}}{(\langle\perp, \text { beg } ; t ; \text { end }\rangle \cup T), \sigma_{\text {sh }} \xrightarrow{\alpha} A(\langle\perp, \text { skip }\rangle \cup T), \sigma_{\text {sh }}^{\prime}}
\end{aligned}
$$

3.2 Pessimistic semantics (section 3.1)

A transaction is now a tuple $\left\langle\tau, s, M, \sigma_{\tau}\right\rangle$, where M is a sequence of object methods, and σ_{τ} is a local state. All the arrows are indexed with a P, for pessimistic.

$$
\begin{gathered}
\overline{\left(\left\langle\tau, s \in\{:=, \text { if }, \ldots\} ; s^{\prime}, M, \sigma_{\tau}\right\rangle \cup T\right), \sigma_{\mathrm{sh}} \xrightarrow{\perp} P\left(\left\langle\tau, s^{\prime}, M, \llbracket s \rrbracket \sigma_{\tau}\right\rangle \cup T\right), \sigma_{\mathrm{sh}}} \\
\frac{\tau \text { fresh }}{\left(\left\langle\perp, \mathrm{beg} ; s, M, \sigma_{\tau}\right\rangle \cup T\right), \sigma_{\mathrm{sh}} \xrightarrow{\tau, \mathrm{beg}}\left(\left\langle\tau, s,[], \sigma_{\tau}\right\rangle \cup T\right), \sigma_{\mathrm{sh}}} \\
\frac{\{o . m\} \triangleleft \operatorname{meths}(T)}{\left(\left\langle\tau, x:=o . m ; s, M, \sigma_{\tau}\right\rangle \cup T\right), \sigma_{\mathrm{sh}} \xrightarrow{\tau, o . m} P\left(\left\langle\tau, s, M::\left(" x:=o . m ; s ", \sigma_{\tau}, " o . m "\right), \sigma_{\tau}\left[x \mapsto r v\left(\llbracket o \rrbracket \sigma_{\mathrm{sh}} \cdot m\right)\right]\right\rangle \cup T\right), \sigma_{\mathrm{sh}}\left[o \mapsto \llbracket o \rrbracket \sigma_{\mathrm{sh}} \cdot m\right]}
\end{gathered}
$$

The difficult part is $o . m$ being invoked has some global effect: each invokation of o returns a new object and a return value (accessed through $r v$). Under transactional semantics, there is a guarantee to the programmer that the actual execution will be equivalent to some serial execution. To get this we need to know that it was ok to call $o . m$ at that point. This is the reason behind the introduction of the mover concept. We write $\{o . m\} \triangleleft \operatorname{meths}(T)$ for "o.m is a left mover of T ".

Definition 1. o. $m \triangleleft p . n$ if and only if

$$
\left\{\sigma^{\prime \prime} \mid \exists \sigma^{\prime} . \sigma \xrightarrow{p . n} \sigma^{\prime} \wedge \sigma^{\prime} \xrightarrow{o . m} \sigma^{\prime \prime}\right\} \subseteq\left\{\sigma^{\prime \prime} \mid \exists \sigma^{\prime} . \sigma \xrightarrow{o . m} \sigma^{\prime} \wedge \sigma^{\prime} \xrightarrow{p . n} \sigma^{\prime \prime}\right\}
$$

i.e., if the set of states obtained by running $p . n$ followed by $o . m$ is included in the set of states obtained by running $o . m$ followed by $p . n$ (left commutativity).

One problem of this semantics is that we can get deadlocks with two transactions sending messages that are not inverse of each other. A solution is running an $o . m$ that has an inverse that can be rolled back, and then make some progress from there.

3.3 Optimistic semantics (section 3.2)

A transaction is now a tuple $\left\langle\tau, s, \sigma_{\tau}, \overleftarrow{\sigma_{\tau}}, \ell_{\tau}\right\rangle$, where ℓ_{τ} is a \log, a list of messages that have been sent already. All the arrows are indexed with an O, for optimistic.
$\frac{\tau \text { fresh }}{\left(\left\langle\perp, \mathrm{beg} ; s, \sigma_{\tau}, \overleftarrow{\sigma_{\tau}},[]\right\rangle \cup T\right), \sigma_{\mathrm{sh}}, \ell_{\mathrm{sh}} \xrightarrow{(\tau, \mathrm{beg})}\left(\left\langle\tau, s, \operatorname{snap}\left(\sigma_{\tau}, \sigma_{\mathrm{sh}}\right), \sigma_{\tau}[\operatorname{stmt} \mapsto \text { "beg; } s "],[]\right\rangle \cup T\right), \sigma_{\mathrm{sh}}, \ell_{\mathrm{sh}}}$

Message call:

$$
\begin{array}{r}
\left(\left\langle\tau, x:=o . m ; s, \sigma_{\tau}, \overleftarrow{\sigma_{\tau}}, \ell_{\tau}\right\rangle \cup T\right), \sigma_{\mathrm{sh}}, \ell_{\mathrm{sh}} \xrightarrow{(\tau, o . m)}\left(\left\langle\tau, s, \sigma_{\tau}\left[o \mapsto\left(\llbracket o \rrbracket \sigma_{\mathrm{sh}}\right) \cdot m, x \mapsto r v\left(\left(\llbracket o \rrbracket \sigma_{\mathrm{sh}}\right) \cdot m\right)\right], \overleftarrow{\sigma_{\tau}}, \ell_{\tau}::(" o . m ")\right\rangle \cup T\right), \sigma_{\mathrm{sh}}, \ell_{\mathrm{sh}} \\
\\
\left(\left\langle\tau, \text { end } ; s, \sigma_{\tau}, \overleftarrow{\sigma_{\tau}}, \ell_{\tau}\right\rangle \cup T\right), \sigma_{\mathrm{sh}}, \ell_{\mathrm{sh}} \xrightarrow{(\tau, \mathrm{cmt})}\left(\left\langle\tau, s, \operatorname{zap}\left(\sigma_{\tau}\right), \operatorname{zap}\left(\overleftarrow{\sigma_{\tau}}\right),[]\right\rangle \cup T\right), \operatorname{merge}\left(\sigma_{\mathrm{sh}}, \ell_{\tau}\right), \ell_{\mathrm{sh}}::\left(\operatorname{fresh}\left(\tau^{\mathrm{cmt}}\right), \ell_{\tau}\right)
\end{array}
$$

where the merge operation goes through the log where it finds operations that it applies in order to the global state. In the last rule, the condition $\forall\left(\tau^{\mathrm{cmt}}, \ell_{\tau^{\prime}}\right) \in \ell_{\mathrm{sh}} . \tau^{\mathrm{cmt}}>\tau \Rightarrow \ell_{\tau} \triangleright \ell_{\tau^{\prime}}$ makes sure the end operation is sensible.

3.4 Conclusion

Section 5 of the paper develops the theory of trace semantics of those programs, develops serial execution and shows both semantics are equivalent to some serialized execution.

