
.

.

.

.

CS 6112 (Fall 2011)
Foundations of Concurrency
29 November 2011
Scribe: Jean-Baptiste Jeannin

1 Readings

The readings for today were:

• Eventually Consistent Transactions, by Sebastian Burckhardt,Manuel Fähndrich, DaanLeijen andMooly
Sagiv, available at
http://research.microsoft.com/pubs/155638/msr-tr-2011-117.pdf

• Transactional Boosting: A Methodology for Highly-Concurrent Transactional Objects, by Maurice Herlihy
and Eric Kosniken, available at
http://www.cl.cam.ac.uk/~ejk39/papers/boosting-ppopp08.pdf

• Coarse-Grained Transactions, by Eric Koskinen, Matthew Parkinson and Maurice Herlihy, available at
http://www.cl.cam.ac.uk/~ejk39/papers/cgt.pdf
Most of the discussion was based on this last paper.

2 Skew heaps

2.1 Deånitions

Let us start with an example: parallelizing insertions in skew heaps.
A skew heap (http://en.wikipedia.org/wiki/Skew_heap) is a heap data structure implemented

as a binary tree. It is deàned recursively as:

• A heap with only one element is a skew heap;

• The result of skew merging two skew heaps is also a skew heap.

Let us just describe how to insert one element e into a skew heap h with root p, whose subtrees are l on
the left and r on the right; the general merge of two heaps can be found on Wikipedia:

..e.p

.l .r

• inserting e into an empty heap just results in the heap with just that element;

• if e > p, the resulting heap has root p, its left subtree is the result of recursively inserting e in r, and
its right subtree is l. Note how we swapped r and l in the process;

1

..p

.insert(e,r) .l

• if e < p, the resulting heap has e as a root, its left subtree is the result of inserting p in r and its right
subtree is l.

..e

.insert(p,r) .l

Remark: What we said in class does not seem to match the Wikipedia article. For wikipedia, the
resulting heap has root e, with the original heap h as its left subtree and an empty right subtree.

..e

.p

.l .r

Now suppose we have the following heap and two concurrent threads, A adding 2 to it, and B adding
6 to it. Several solutions are possible.

..0

.1 .3

.4 .5

2.2 Global lock

The àrst solution is to use a global lock on the heap. This is not so nice because it is slow: you have to wait
for one insertion to complete before the next one can start.

2

2.3 Local locks

The second solution is to use a àne grain locking procedure: use one lock per node, and acquire and release
the locks as we traverse the tree. Here is an example of an execution using such a procedure:

Thread A Thread B
– Acquire lock for node 0
– Swap children of 0

..0

.3

.4 .5

.1

– Release lock for node 0
– Acquire lock for node 1 – Acquire lock for node 0
– Insert 2 into 1 – Swap left and right children of 0

..0

.1

.2

.3

.4 .5

– Insert 6 into 3
..0

.1

.2

.3

.5

.6

.4

This performs relatively well, but it is hard to write and get right.

2.4 Transactions

We could also use transactions, but in the previous examples, here is what would happen:

Thread A Thread B
– Read 0 – Read 0
– Write 0.{L,R} – Write 0.{L,R}
...

...

3

We will get a conáict when committing, and one of the threads will have to be rolled back. It hinders
concurrency, even though it is efàcient for the programmer.

Here is one more example: imagine trying to insert a few single-digit numbers and 6000 into a huge
heap. The insert of a single-digit number has a short log, and will always try to commit àrst. The insert
of 6000, on the other hand, will always get rolled back. If trying to parallelize it with several insertions of
single-digit numbers, it will only actually happen at the very end.

3 Coarse-Grained Transaction

We now focus on Maurice Herlihy and Eric Koskinen’s work, and especially their POPL’10 paper Coarse-
Grained Transactions.

The basic idea is to have a transaction mechanism that is convenient to programmers but does not have
the big conáicts that normal transactions generate.

Example 1.
global SkipList Set;
T1 : atomic {

Set.add(5);
Set.remove(3);

}
T2 : atomic {

if(Set.contains(6)){
Set.remove(7);

}
}

In this example using a àne-grained synchronization technique would produce a conáict, because
adding 5 and removing 7 will read or write the same memory locations. However at a coarse-grained
level, these operations commute with each other as soon as their arguments are distinct.

We will consider two execution semantics:

• Pessimistic Execution Semantics (section 3.1 of the paper) prevent conáicts by checking if there will
be a conáict before doing anything. They are called pessimistic because they act like therewill always
be a conáict.

• Optimistic Execution Semantics (section 3.2 of the paper) detect conáicts afterwards: they copy the
initial state, and roll back if there is a conáict when committing. They are called optimistic because
they act hoping that there will not be a conáict.

3.1 Syntax

The language is given by:

c ::= c; c | e := e | if b then c else c

s ::= s; s | c | beg; t; end
t ::= t; t | c | o.m

beg; t; end is the syntax for a transaction. o.m represents a method call m on a shared object o. Note that
the syntax purposely makes nested transactions impossible.

4

The semantics is a labeled transition system, with transitions

T, σsh
α−→A T ′, σ′

sh

where T is a set of transactions t, σsh is a global state, i.e., a ànite map from object ids to objects. α ∈
⊥ ∪ (N × (o.m ∪ {beg, end, cmt})) is a label. beg is short for begin, and cmt is short for commit. A just
means atomic.

Each transaction is a tuple ⟨τ, p⟩, where τ is a transaction identiàer and p is the program text for the
transaction.

The abridged atomic semantics is given by:

(⟨τ, c; c′⟩ ∪ T), σsh
⊥−→A (⟨τ, c′⟩ ∪ T), [[c]]σsh

α = (τ, beg) · α′ · (τ, end) · (τ, cmt) τ fresh (⟨τ, t⟩ ∪ T), σsh

α′

−→∗ (⟨τ, skip⟩ ∪ T), σ′
sh

(⟨⊥, beg; t; end⟩ ∪ T), σsh
α−→A (⟨⊥, skip⟩ ∪ T), σ′

sh

3.2 Pessimistic semantics (section 3.1)

A transaction is now a tuple ⟨τ, s,M, στ ⟩, where M is a sequence of object methods, and στ is a local state.
All the arrows are indexed with a P , for pessimistic.

(⟨τ, s ∈ {:=, if, . . .}; s′,M, στ ⟩ ∪ T), σsh
⊥−→P (⟨τ, s′,M, [[s]]στ ⟩ ∪ T), σsh

τ fresh

(⟨⊥, beg;s,M, στ ⟩ ∪ T), σsh
τ,beg−→P (⟨τ, s, [], στ ⟩ ∪ T), σsh

{o.m} ▹ meths(T)

(⟨τ, x := o.m; s,M, στ ⟩ ∪ T), σsh
τ,o.m−→P (⟨τ, s, M :: (“x := o.m; s”, στ , “o.m”), στ [x 7→ rv([[o]]σsh.m)]⟩ ∪ T), σsh[o 7→ [[o]]σsh.m]

The difàcult part is o.m being invoked has some global effect: each invokation of o returns a new
object and a return value (accessed through rv). Under transactional semantics, there is a guarantee to
the programmer that the actual execution will be equivalent to some serial execution. To get this we need
to know that it was ok to call o.m at that point. This is the reason behind the introduction of the mover
concept. We write {o.m} ▹ meths(T) for “o.m is a left mover of T ”.

Deànition 1. o.m ▹ p.n if and only if

{σ′′ | ∃σ′.σ
p.n−→ σ′ ∧ σ′ o.m−→ σ′′} ⊆ {σ′′ | ∃σ′.σ

o.m−→ σ′ ∧ σ′ p.n−→ σ′′}

i.e., if the set of states obtained by running p.n followed by o.m is included in the set of states obtained by
running o.m followed by p.n (left commutativity).

One problem of this semantics is that we can get deadlocks with two transactions sending messages
that are not inverse of each other. A solution is running an o.m that has an inverse that can be rolled back,
and then make some progress from there.

5

3.3 Optimistic semantics (section 3.2)

A transaction is nowa tuple ⟨τ, s, στ ,
←−στ , ℓτ ⟩, where ℓτ is a log, a list ofmessages that have been sent already.

All the arrows are indexed with an O, for optimistic.

τ fresh

(⟨⊥, beg; s, στ ,
←−στ , []⟩ ∪ T), σsh, ℓsh

(τ,beg)−→O (⟨τ, s, snap(στ , σsh), στ [stmt 7→ “beg; s”], []⟩ ∪ T), σsh, ℓsh

Message call:

(⟨τ, x := o.m; s, στ ,
←−στ , ℓτ ⟩ ∪ T), σsh, ℓsh

(τ,o.m)−→O (⟨τ, s, στ [o 7→ ([[o]]σsh).m, x 7→ rv(([[o]]σsh).m)],←−στ , ℓτ :: (“o.m”)⟩ ∪ T), σsh, ℓsh

∀(τ cmt, ℓτ ′) ∈ ℓsh.τ
cmt > τ ⇒ ℓτ ◃ ℓτ ′

(⟨τ, end; s, στ ,
←−στ , ℓτ ⟩ ∪ T), σsh, ℓsh

(τ,cmt)−→O (⟨τ, s, zap(στ), zap(←−στ), []⟩ ∪ T),merge(σsh, ℓτ), ℓsh :: (fresh(τ cmt), ℓτ)

where the merge operation goes through the log where it ànds operations that it applies in order to the
global state. In the last rule, the condition ∀(τ cmt, ℓτ ′) ∈ ℓsh.τ

cmt > τ ⇒ ℓτ ◃ ℓτ ′ makes sure the end
operation is sensible.

3.4 Conclusion

Section 5 of the paper develops the theory of trace semantics of those programs, develops serial execution
and shows both semantics are equivalent to some serialized execution.

6

