

## 1 Semantics of concurrent revisions

In concurrent revisions, each thread gets its own isolated thread of control. All updates to "shared" state occur at joins.

## Contributions

1. Semantics
2. Proof of determinancy
3. Formalizes connection to snapshot isolation

$$
\begin{aligned}
& x=0 \\
& y=0 \\
& r=\text { rfork }\{\text { if } y=0 \text { then } x++\} \\
& \text { if } x=0 \text { then } y++; \\
& \text { rjoin } r \text {; }
\end{aligned}
$$

Assuming versioned types for x and y , output is $x==1$ and $y==1$.

## 2 Encoding transactions in concurrent revisions

## Grammar

$$
\begin{array}{cc}
v::= & c|x| l|r| \lambda x . e \\
e::= & v|e e|(e ? e: e) \mid \text { ref } e \mid \\
& !e|e:=e| \text { rfork } e \mid \text { rjoin } e \\
\varepsilon:= & \square|\varepsilon e| v \varepsilon|(\varepsilon ? e: E)| \text { ref } e \\
& !\varepsilon|\varepsilon:=e| l:=\varepsilon \mid \text { rjoin } \varepsilon
\end{array}
$$

$s \in$ Rid $\rightharpoonup$ Store $\times$ Store $\times$ Expr

## Selected rules

## Definition.

$$
s \rightarrow_{r} s^{\prime}
$$

Definition (Apply).

$$
s(r \mapsto\langle\sigma, \tau, \varepsilon[(\lambda x . e) v]\rangle]) \rightarrow_{r} s[r \mapsto\langle\sigma, \tau, \varepsilon[e[v / x]]\rangle]
$$

Definition (Deref).

$$
s(r \mapsto\langle\sigma, \tau, \varepsilon[!\ell]\rangle]) \rightarrow_{r} s[r \mapsto\langle\sigma, \tau, \varepsilon[(\sigma:: \tau)(\ell)]\rangle]
$$

Definition (Fork).

$$
s(r \mapsto\langle\sigma, \tau, \varepsilon[\operatorname{rfork} e]\rangle]) \rightarrow_{r} s\left[r \mapsto\left\langle\sigma, \tau, \varepsilon\left[r^{\prime}\right]\right\rangle \quad r^{\prime} \mapsto\langle\sigma:: \tau, \cdot, e\rangle\right]
$$

Definition (Join).

$$
\begin{array}{ccc}
s\left[r \mapsto\left\langle\sigma, \tau, \varepsilon\left[\text { rjoin } r^{\prime}\right]\right\rangle\right. & \left.r^{\prime} \mapsto\left\langle\sigma^{\prime}, \tau^{\prime}, v\right\rangle\right] \rightarrow_{r} & s\left[r \mapsto\left\langle\sigma, \tau:: \tau^{\prime}, \varepsilon[v]\right\rangle, r^{\prime} \mapsto \perp\right] \\
s\left[r \mapsto\left\langle\sigma, \tau, \varepsilon\left[\text { rjoin } r^{\prime}\right]\right\rangle\right. & \left.r^{\prime} \mapsto\left\langle\sigma^{\prime}, \tau^{\prime}, \perp\right\rangle\right] \rightarrow_{r} & \text { error }
\end{array}
$$

Notation $\quad e \downarrow s$ Evaluating $e$ results in the store $s$
Definition. Equivalence
$s \approx s^{\prime} \Longleftrightarrow \exists \alpha, \beta . s=\alpha\left(\beta\left(s^{\prime}\right)\right)$
Where $\alpha$ and $\beta$ rewrite thread ids and location ids.

Theorem If $e \downarrow s$ and $e \downarrow s^{\prime}$ then $s \approx s^{\prime}$

Lemma $\rightarrow_{r}$ preserves $\approx$

Lemma If $s_{1}, s_{1}^{\prime}$ are reachable and $s_{1} \approx s_{1}^{\prime}$ and

$$
\begin{array}{lll}
s_{1} \rightarrow_{r} & s_{2} \\
s_{1}^{\prime} \rightarrow_{r}^{\prime} & s_{2}^{\prime}
\end{array}
$$

then $\exists s_{3}, s_{3}^{\prime}$

$$
\begin{array}{cc}
s_{2} \rightarrow_{r}^{\prime} & s_{3} \\
s_{2}^{\prime} \rightarrow_{r} & s_{3}^{\prime}
\end{array}
$$

and $s_{3} \approx s_{3}^{\prime}$

