
.

.

.

.

CS 6112 (Fall 2011)
Foundations of Concurrency
15 November 2011
Scribe: Raghu Rajkumar

1 Introduction

The goal of writing parallel programs is to increase throughput bymeans of concurrent executionwhile
maintaining consistency of shared data. In transactional methods, consistency is maintained by the appro-
priate use of synchronization primitives, such as locks. However, such programs admit multiple different
interleavings of statements, resulting in nondeterministic executions.

Burckhardt, Baldassin, and Leijen present an alternative approach, namely Revisions, to maintaining
consistency of shared data, in which explicit support is provided for the programmer to specify how con-
áicting writes to shared data must be resolved. The major advantage of this approach is that the use of
revisions does not create nondeterminism.

2 Transactions vs. Revisions

Let us consider three different variants of a very simple program.

void foo() {
if (y=0)

x=1;
}

void bar() {
if (x=0)

y=1;
}

1. Sequential Execution

int x = 0;
int y = 0;
task t = fork { foo(); }
bar();
join t;

Possible Outputs
x y
0 1
1 0
1 1

When executing sequentially, both threads operate on shared state, and all interleavings of statement
are possible. As a result, there are three possible output states (as in the table above), only the àrst
two of which are serializable

2. Transactional Execution

int x = 0;
int y = 0;
task t = fork { atomic { foo(); } }
atomic { bar(); }
join t;

Possible Outputs
x y
0 1
1 0

1

Using transactional semantics, the program executionwill be equivalent to some serializable schedule.
The possible outputs are x = 0, y = 1 and x = 1, y = 0 depending on whether foo(); or bar(); was
executed àrst.

3. Revisioned Execution

versioned⟨int⟩ x = 0;
versioned⟨int⟩ y = 0;
revision r = rfork { foo(); }
bar();
rjoin r;

Possible Outputs
x y
1 1

Using Revision semantics, each forked revision gets its own copy of the shared state. When two
revisions are joined, the states of each are merged on a per-variable basis, resulting in the output of
x = 1, y = 1.

3 Revision Diagram

Revision diagrams aid in visualizing the áow of control in a revisioned program. The following is a revision
diagram for the example above.

.

.

Figure 1: A revision diagram

3.1 Nested Revisions

The statement rfork e returns a handle to the new revision that is forked. Any revision that has access
to this handle can join with the corresponding revision, enabling the creation of nested revisions. Some
nestings are not possible, as the only point at which a revision handle can be passed from one revision to
another is at a join. The following àgure shows possible and impossible nestings.

2

.

.

4 Isolation Types

Isolation types are datatypes that specify amerging function to reconcile updates to a shared variable across
revisions. The two isolation types deàned in [1] are versioned types (versioned⟨t⟩) and cumulative types
(cumulative⟨t, f⟩).

4.1 Versioned Types

During a join, a variable of a versioned type behaves the same as a shared variable in the absence of conáict.
If there is a conáict, i.e. if both revisions udpdate a shared variable, then the value of the variable after the
join is that of the joining revision.

4.2 Cumulative Types

Cumulative Types have a deànedmerge function that speciàes the value of a cumulative variable following
a join. The merge function takes the original value, the joined revision’s value, and the joining revision’s
value, and produces the value resulting from the join. Here are some examples of cumulative types

1. cumulative⟨int, λ(o,m, r).m+ (r− o)⟩: This represents an integer variable, updates to which are
additive.

2. cumulative⟨int, λ(o,m, r).if r = o then m else r⟩: This represents a versioned⟨int⟩ as described
above.

5 Datatype Granularity

Revisions do not enable maintenance of correctness constraints that involve two or more variables. For
example, consider two versioned⟨int⟩’s, x and y, that represent co-ordinates of a point. The point must
satisfy the constraint that it lies within the unit circle. The program from section 2 with the corresponding
revision diagram in Figure 1, invalidates the constraint although neither revision violates the constraint on

3

its own. The proposed solution to this problem is to deàne a versioned type containing both variables, for
example, versioned⟨pair⟨int⟩⟩.

6 Sequential Types

It is diàcult to deànemerge functions for complex datatypes. For instance, what is a goodmerge function
for list⟨int⟩? To address this, sequential datatypes are introduced in [2].

Deànition 1. A sequential datatype is a six-tuple (S,R,M, I, ρ, µ) where

• S is a set of states

• R is a set of read operations

• M is a set of modify operations

• I ∈ S is the initial state

• ρ ∈ R× S → Val is the read function

• µ ∈ M × S → S is the modify function

For convenience, assume ∃ϵ ∈ M. µ(ϵ, s) = s for all s ∈ S.
For a sequence of operationsm1·. . .·mk ∈ M∗, wewriteµ(m1·. . .·mk, s) to stand forµ(mk, . . . , µ(m1, s) . . .)

6.1 Examples of sequential datatypes

1. IntReg = (Z, {get}, {set(i) | i ∈ Z}, 0, ρ, µ)
where ρ(get, i) = i
and µ(set(i′), i) = i′

2. IntRegAdd = (Z, {get}, {set(i), add(i) | i ∈ Z}, 0, ρ, µ)
where ρ(get, i) = i
and µ(set(i′), i) = i′

and µ(add(i′), i) = i+ i′

Deànition 2. Two operations w1, w2 are equivalent for a sequential datatype D, written w1
∼=D w2 if and

only if
∀s ∈ S. µ(w1, s) = µ(w2, s)

Example: set(i) ∼=IntRegAdd set(0) · add(i)

7 Compensations

Intuitively, compensations are functions that compensate for modiàcations done by the other revision in
the join.

Deànition 3. A compensation speciàcation for a sequential datatype D is a function

c∗ ∈ (M∗ ×M∗) → (M∗ ×M∗)

For convenience, we deàne

c∗l
∆
= π1 ◦ c∗

c∗r
∆
= π2 ◦ c∗

4

Deànition 4. A compensation speciàcation c∗ is consistent iff

∀wl, wm ∈ M∗. wl · c∗l (wl, wr) ∼=D wr · c∗r(wl, wr)

7.1 Compensation Tables and Tiling

A compensation table is a function c : (M ×M) → (M ×M). A compensation table uniquely deànes a
consisent compensation speciàcation. The àgure below shows how c∗(m1 ·m2,m3 ·m4) can be computed
by tiling the correspoding compensation table c.

.

.

v1 = cr(m2, cl(m1,m3))
v2 = cl(cr(m1,m3),m4)

8 Concrete Implementations of Sequential Datatypes

A concrete implementation is a tuple (S,R,M, I, ρ, µ, r, f)
where (S,R,M, I, ρ, µ) is a sequential datatype
and r ∈ S → S is a replication function
and f ∈ S × S × S → S is a merge function

A replication function produces a new state when a fork occurs, and the merge function is isomorphic to
that of cumulative types (the order of parameters is different).

8.1 Concrete Implementation of IntRegAdd

The compensation table IntRegAdd and the corresponding concrete implementation is given below. R(i)
represents a value that is relative, and A(i), one that is absolute. X(i) stands for either R(i) or A(i).

c(add(i), add(j)) = (add(j), add(i))
c(set(i), add(j)) = (add(j), set(i+ j))
c(add(i), set(j)) = (set(j), ϵ)
c(set(i), set(j)) = (set(j), ϵ)

5

Compensation Table for IntRegAdd

S = {A(i), R(i) | i ∈ Z}
I = A(0)
R = {get}
M = {set(i), add(i) | i ∈ Z}

ρ(get,X(i)) = i
µ(set(i), X(j)) = A(i)
µ(add(i), X(j)) = X(j + i)

r(X(i)) = R(i)
f(, A(m),) = A(m)

f(A(n), R(m), X(i)) = A(n+m− i)
f(R(n), R(m), X(i)) = X(n+m− i)

Concrete Implementation of IntRegAdd

Acknowledgement: The àgures in these notes were taken from the references.

References

[1] Sebastian Burckhardt, Alexandro Baldassin, and Daan Leijen. Concurrent programming with revisions
and isolation types. In Proceedings of the ACM international conference on Object oriented programming systems
and applications (OOPSLA ’10).

[2] Sebastian Burckhardt, Manuel Fahndrich, and Daan Leijen. Roll forward, not back - A case for deter-
ministic conáict resolution. In The 2nd Workshop on Determinism and Correctness in Parallel Programming,
2011.

[3] Sebastian Burckhardt and Daan Leijen. Semantics of concurrent revisions. In Proceedings of the 20th Eu-
ropean conference on Programming languages and systems: part of the joint European conferences on theory and
practice of software (ESOP ’11/ETAPS ’11)

6

