
.

.

.

.

CS 6112 (Fall 2011)
Foundations of Concurrency
08 November 2011
Scribe: Mark Reitblatt

1 Orc

Orc is all about “orchestration”. It’s basically the communciation, distribution skeleton of a program. Web
scripting, workáow applications etc. Orc is the glue for building these orchestration tasks. Orc’s key ab-
straction is a site, something you can call and that publishes results. Services are implemented as sites.

Orc is a simple language. It consists of

• Site calls M(v)

• Symmetric parallel composition f |g

• Sequential composition with respect to a variable x: f > x > g. f executes after g publishes a value,
with x bound to that value. If g publishes more than one value, f is run multiple times, once for each
value published.

• Asymmetric parallel composition with respect to x: f < x < g Subcomputations of f that don’t
depend upon x execute in parallel with g, while computations dependent upon x block until g pub-
lishes a value which is in turn bound to x. f is run at most once.

• Deànitions D(x) =df g

Site calls Site calls perform a computation and publish at most one result.

Symmetric parallel composition To evaluate f |g, evaluate f and g in parallel. f |g| publishes v iff f or g
publishes v.

Sequential composition To evaluate f > x > g, begin by evaluating f . For each v published by f , evaluate
[v/x]g in parallel. f > x > g publishes w iff some [v/x]g publishes w.

Asymmetric parallel composition To evaluate f < x < g, evaluate f and g in parallel. f may blockwaiting
for data from g (x). If g publishes v, kill g and continue evaluating [v/x]f .

Question 1. Is < x < necessary? Can it be encoded using | and > x >?

Comment 1. FromOwen: Seems like it was inspired by Bash, I would really like to use a language like this
to write in a command line script.

1

1.1 Examples

• fork − join= (let(x, y) < x < M) < y < N

• sync = fork − join > x > (f |g)

• delay = (Rtimer(1) >> let(x)) < x < M

• priority = let(x) < x < (N |delay)

2 Timed Trace semantics

Originally, Orc was given an asynchronous, then a “synchronous-but-untimed” semantics. Here we will
use a “relative-time” semantics which describe delays from site calls.

(Rtimer(s) >> let(v))|(Rtimer(3) >> let(w))

The operational semantics are based on a labelled transition system f
t,a,f→

′
with time-event pairs t, a

for labels.

f
t,a,f→

′

Expression f may engage in event a after t units of time, without engaging in other events, resulting in
expression f ′

2.1 Rules

Sites

let(v)
0,!v→ 0

Immediately publish value v and transition to an expression 0 that engages in no other events.

Rtimer(t)
t,!→ 0

Publish a signal after t time units.

Combinators
f →t,a f ′

f |g →t,a f ′|g

Works in asynchronous system, but NOT with time. Consider Rtimer(8)|Rtimer(3).
To àx this, we introduce “Time Shifting”, f t. Evaluate for t time units without an event. For example,

Rtimer(5)3 ≡ Rtimer(2). But, it may not alwats be possible: Rtimer(5)7 ≡ ⊥.
- Rtimer(2)5 ≡ ⊥

f →t,a f ′

f |g →t,a f ′|gt

Only if gt is not ⊥.
Rest of the semantics similarly extend the asynchronous semantics.

2

[E(x) , f] ∈ D
E(p)

0,τ→ [p/x].f
Def

k ∈ Σ(M,m)

M(m)
0,τ→?k

Call
(t,m) ∈ k

?k
t,!m→ 0

Return
f

t,a→ f ′

f |g t,a→ f ′|gt
Sym1

f
t,a→ g′

f |g t,a→ f t|g′
Sym2

f
t,a→ f ′ a ̸=!m

f > x > g
t,a→ f ′ > x > g

Seq1N

f
t,!m→ f ′

f > x > g
t,τ→ (f ′ > x > g)|[m/x].g

Seq1V
f

t,a→ f ′

f < x < g
t,a→ f ′ < x < gt

Asym1

f
t,!m→ g′

f < x < g
t,τ→ [m/x].f t

Asym2V
g

t,a→ g′ a ̸=!m

f < x < g
t,a→ f t < x < g′

Asym2N

2.2 Denotational Semantics

An execution is a ànite sequence of time-event pairs that f engages in. A trace is an execution without
internal events. < f >= traces of f deàned operationally.

Trace sets form a denotation, µ(f).

Theorem 1. Operational and denotation semantics are equivalent: < f >= µ(f).

This allows for compositional reasoning.

3

