CS 6112 (Fall 2011)
Foundations of Concurrency
08 November 2011

Scribe: Mark Reitblatt

Cornell University
Department of

Computer Science

1 Orc

Orc is all about “orchestration”. It’s basically the communciation, distribution skeleton of a program. Web

scripting, workflow applications etc. Orc is the glue for building these orchestration tasks. Orc’s key ab-

straction is a site, something you can call and that publishes results. Services are implemented as sites.
Orc is a simple language. It consists of

e Site calls M (v)
e Symmetric parallel composition f|g

e Sequential composition with respect to a variable z: f > = > g¢. f executes after g publishes a value,
with z bound to that value. If g publishes more than one value, f is run multiple times, once for each
value published.

e Asymmetric parallel composition with respect to z: f < x < g Subcomputations of f that don’t
depend upon x execute in parallel with g, while computations dependent upon z block until g pub-
lishes a value which is in turn bound to x. f is run at most once.

e Definitions D(z) =4 ¢
Site calls Site calls perform a computation and publish at most one result.

Symmetric parallel composition To evaluate f|g, evaluate f and g in parallel. f|g| publishes v iff f or g
publishes v.

Sequential composition Toevaluate f > = > g, begin by evaluating f. For each v published by f, evaluate
[v/x]g in parallel. f > x > g publishes w iff some [v/x]g publishes w.

Asymmetric parallel composition To evaluate f < x < g, evaluate f and g in parallel. f may block waiting
for data from g (x). If g publishes v, kill g and continue evaluating [v/z]f.

Question 1. Is < = < necessary? Can it be encoded using | and > = >?

Comment 1. From Owen: Seems like it was inspired by Bash, I would really like to use a language like this
to write in a command line script.

1.1 Examples
o fork — join= (let(z,y) <z < M) <y <N
e sync = fork — join > x > (f|g)
o delay = (Rtimer(1) >> let(x)) <x < M

e priority = let(x) < z < (N|delay)

2 Timed Trace semantics

riginally, Orc was given an asynchronous, then a “synchronous-but-untimed” semantics. Here we wi
O lly, O ynch th “synch but-untimed” t H 11
use a “relative-time” semantics which describe delays from site calls.

(Rtimer(s) >> let(v))|(Rtimer(3) >> let(w))

/
t7 . . .
The operational semantics are based on a labelled transition system f at f with time-event pairs ¢, a
for labels.

ta,f
e

Expression f may engage in event a after ¢ units of time, without engaging in other events, resulting in
expression f’

2.1 Rules

Sites ol
let(v) =5 0

Immediately publish value v and transition to an expression 0 that engages in no other events.

|

Rtimer(t) = 0

Publish a signal after ¢ time units.

Combinators
f _>t,a f/
flg = f'lg
Works in asynchronous system, but NOT with time. Consider Rtimer(8)|Rtimer(3).
To fix this, we introduce “Time Shifting”, f ¢, Evaluate for ¢ time units without an event. For example,
Rtimer(5)3 = Rtimer(2). But, it may not alwats be possible: Rtimer(5)” = L.
- Rtimer(2)> = L

f _>t,a f/
flg =5 f'lg*

Only if g* is not L.
Rest of the semantics similarly extend the asynchronous semantics.

[E(z) 2 f]eD k € X(M,m) (t,m) € k F8 g

e Call 1 Return —7%a .. Syml
E(p) ™5 [p/a].f M (m) “52k 2k "0 flg ™ plgt ™
t,a t,a
=g f=f a #m
—ta o . Sym2 SeqlN
flg S g > fre>gSfsasg 0
ftﬂ)n f/ SeqlV fti)lf/ A 1
e sym
f>x>gtj>(f’>a:>g)|[m/:1:].g d f<33<gt4a>f’<az<gt Y
tm , ta |
Lt Asym2V g4 __agm Asym2N
sym sym
f<:c<gt£>[m/a:].ft y f<r<gBftcr<yg y

2.2 Denotational Semantics

An execution is a finite sequence of time-event pairs that f engages in. A trace is an execution without
internal events. < f >= traces of f defined operationally.
Trace sets form a denotation, p(f).

Theorem 1. Operational and denotation semantics are equivalent: < f >= u(f).

This allows for compositional reasoning.

