
.

.

.

.

CS 6112 (Fall 2011)
Foundations of Concurrency
30 August 2011
Scribe: Stephen Longåeld

• The course: Advanced course in languages focusing on concurrency

• First half: look at historical side of things, second half: papers

• Each day there will be a scribe, who will take notes that will be posted on the course website.

• Evaluation:

– Participation

– Course project

• 5 minutes at the end of class today to talk about forming up into groups

– Wants us to be in groups of 2 to 3 for the course projects

• Ideas for Projects:

– Open to anything that involves concurrency in some form. Should have producing a document
that could be sent to some publication venue as a goal.

– Possible ideas:

∗ Survey paper – look at a bunch of papers, put them in some common form, compare them.

∗ Hacking project – implementing some general and reuseable system (interpreter?) in an-
other language.

· π-calculus has an implementation called Pict; could use this to build an interpreter for
another language.

· Proof assistant –modeling a system formally, and checking the logic with amechanical
proof assistant.

– Also open to other kinds of project ideas.

• On the course webpage:

– http://www.cs.cornell.edu/courses/CS6112/2011fa
– Number changed to 6112.

– Course project preliminary proposal is due on September 11th (half page to one page).

– Project check-up at the end of October.

– Presentations on the last day of class, ànal writeup can be turned in then or a few days later.

• Course web page:

– Tentative plans in grey, solid plans in black.

1

– If there are things you really want to talk about, but is not on the list, please bring it up.

• Finishing up a few things from last time:

• CSP:

a ::=(arithmetic operations)

b ::=(boolean operations)

c ::=skip|x := a|α?x|α!x|c α|c1||c2|c1; c2|if g à|do g od

g ::=b → c|b ∧ α?x → c|b ∧ α!a → c|g1[]g2

– g – Dijkstra’s guarded command syntax.

– All of the operational semantics rules are represented in the CS4110 lecture notes, lectures 26-27.
http://www.cs.cornell.edu/Courses/cs4110/2010fa/lectures/lecture26.pdf.

• What do programs look like in this CSP language?

– if(x ≤ y− > m!y[]y ≤ x− > m!x)fi.

– This program sends the maximum of x and y over channel m.

– If they are equal, there is no way to distinguish which was sent.

– Remember that [] is actually a non-deterministic selection.

• Another example:

– do (true ∧ α?x → β!x) od

– Hooks up α to β

– Buffering!

– Remember that when receivers receive, they block

• One more example:

– do (true ∧ α?x)− > γ!x[]true ∧ β?x− > γ!x) od

– Nondeterministic merge from α and β.

• Are guards atomic?

– Yes! Once a guarded command begins, the two occurrences of x cannot interfere with each
other.

• We might look at CHP at some point in the future

– Note to Async crew: àgure out a good paper to look for that

• Starting point for the pi calculus:

– Finite automata!

• Typically, we will present these graphically:

• L(A) – language of strings over an automata, with internal symbols Σ

2

• Two automata,A1 andA2 are considered to be equivalent if their languages are equivalent,L(A1) =
L(A2)

• The language that can be accepted by a ànite automata can also be expressed as a regular expression
(e.g., a((bc+ c)a)∗).

• Kleene proved that the set of things that you can match with a regex is the same as the one that you
can match with ànite automata

– There are rich equational theories—e.g., Prof. Kozen has done work on this.

– Some examples of laws include:

∗ Rϵ = R

∗ R|S = S|R
∗ R|
∗ T (R|S) = TR|TS

• Expected to familiar with several operations on ànite automata.

– There are a handful of operations and axioms that can be used to prove many things about
them.

• Sequential computation: a trace through a ànite automata.

– Can change a nondeterministic machine and embed it in a deterministic machine.

• Milner thinks that this is problematic:

– We will have graphs of a process, and we will interact with it by doing certain actions.

– Accepting alphabet is things that we can do, and bring us into different states.

– Different model of interaction with computers.

– Don’t want to be so committed to equivalences that we get through some of the well-known
transforms.

• Deterministic systems are very different to interact with than non-deterministic systems.

– Do not want axioms like T (R|S) = TR|TS, since which T you pick matters in the second.

• Theory of simulations and bisimulations will be talking about today.

• First thing:

– tweak our basic model of computation

• A Labeled Transition System (LTS)

– Call it that instead of a ànite automata.

– Get rid of ànal states – any possible states are ànal states.

– Accepting strings are not the right kind of equivalence for LTS.

– Also, we will be getting rid of the start state.

∗ Will only be talking about what we can do from some arbitrary states.

3

• An LTS is just a set of states and a transition relation.

• Why is language equivalence not what we want for these kind of systems?

• Milner likes to think about all the processes as black boxes.

– All you can see is what buttons you can press in each state.

– If you are in a state, you cannot press a button that is not active.

• State diagram for vending machine:

– From some state, you can insert a 2p coin in, and then you can get tea out of it, or you can insert
another 2p coin and then get coffee out.

– Two kinds of actions:

∗ Actions that we can initiate (will be written normally), and actions that the system can
initiate (will be written with an overbar).

• Another automaton:

– Inserting a 2p coin, you either go into a state where you can get tea, or into a state where you
can insert another 2p coin, and then get coffee.

– The original is very much the one we want.

∗ This system, if the box chooses that you can get tea, then you can buy tea. However, it
might force you to put in another 2p coin to get coffee.

∗ Nondeterministic if you can get tea or coffee.

• We don’t need to distinguish bar actions from unbared actions in this example, but it will be useful
in future systems.

– An examplemight be in a lottery system, where a bared actionwould be awin dispensing coins.

• Language equivalence doesn’t work for these two systems:

4

– The two system we made up accept the same languages, however, they don’t allow us to have
the same modes of interactions.

• David Park and Milner worked out: theory of simulation and bisimulation (lots of varieties of these
will be deàend in the next few weeks) that allows you to compare two different (possibly nondeter-
ministic) systems, and say when they are behaving the same to some outside observer.

– We will be able to say that the two are equivalent or non-equivalent in some formal way

• Even more boiled down example: (really strong tea, eh?)

– These two will accept the same language, but they will not be the same, since the nondetermin-
ism in the second state screws things up.

• In our formalization, we will be able to say if states are able to simulate other states.

• if p S q, and p can go to p′ through a, then there exists a q′ such that q can go to q′ through a, and
p′ S q′.

– In this case, we will say that q simulates p.

– S needs to be big enough, that if we start to do something in p, then we can do something in q,
and the property will still hold.

– Whenever we have something related by S, then both the state on the lefts and right can do
something, and S will still hold.

– S is directional.

• When S exists, we say that one state can simulate another.

– S is not an equivalence relation – it could be empty.

– We would like to build up to a notion of equivalence.

• Example:

– Would like to show that p0 simulations q0.

5

– S will be a set of pairs of states: S = {(q0, p0) · · · }.
– Start by adding those states:

∗ For every (q, p) in S, then if q can transition through some action, than p can transition
through the same action.

∗ Since q0 can trasition on a, the process p0 must be able to transition on a. It can! It will
transition to p1 in both cases, therefore, S now contains:

S = {(q0, p0), (q1, p1), (q′1, p1) · · · }

∗ q1 can do a b, which p1 can do, and q1 can do a c, which p1 can also do, therefore the
complete S is:

S = {(q0, p0), (q1, p1), (q′1, p1), (q2, p2), (q3, p3)}

There is a complete simulation in the pis of the qis.

• This is a directed notion of simulation

– Would like to use it to make an equivalence relation, but it is not reáexive or symmetric.

• Strong bisimulation – a (strong) simulation whose converse is also a strong simulation.

• Recall that the converse of a relation S is deàned by S−1 △
= {(x, y)|(y, x)}.

• We are a tiny bit short on time:

– Deànition: a relation S is a strong bisimulation iff S and S−1 is a strong simulation

– The example we did above is not a strong bisimulation since S−1 is not a strong simulation.

– The core of the reason for this is: “what can simulate p0 in the other system?” – needs to take
to a state that can also accept b and c, which neither q1 nor q′1 can do.

• Deànition:

– Notation: write p ∼ q if there exists a strong bisimulation S s.t. p S q

– This is the notation that we will be using for the rest of the course, though with a handful of
different variations.

∗ For example, might not care about the number of internal transitions.

• Two interesting propositions:

– ∼ is an equivalence – it is a binary relation on states.

– ∼ is often called “bisimularity”.

• Two case are easy:

– Reáexive: Have to show that every process p is ∼-equivalent to p.

∗ Trivially a strong simulation – equality.

– Symmetric: for all p, q in Q we have p ∼ q ⇒ q ∼ p.

∗ This holds by deànition

– Transitive: for all p, q, r in Q, if p ∼ q and q ∼ r, then p ∼ r

6

∗ This can be worked out by a pasting argument – string it together and it works.

∗ Left as an exercise.

• Now is where some heads will explode (maybe):

– Second proposition: ∼ is a strong bisimulation.

– The property itself is a strong bisimulation.

– ∼ deànes bisimilarity, and it could have different relationships inside of it.

– This is the biggest one—the union of all bisimulations—we will be talking about these kinds of
problems more later on.

• These deànitions are “seductively simple” but actually are quite rich.

– We will be using them quite a bit over the next few weeks.

– One thing that people often confuse: to be a bisimulation, the relation and its converse have to
be strong simulations.

∗ Not the case: that if you have a state that can be simulated by some state, and that state can
be simulated by the àrst state (possibly in a different way) that those things are bisimilar.

• These two systems can strongly simulate each other, but they are still different.

– The left state can take an a and then deadlock.

• There doesn’t exist a bisimulation for this, since the converse doesn’t hold.

7

