
CS 6110 S18 Lecture 32 Kinding

In this lecture, we’ll explore a kind of generalization of the polymorphic λ-calculus that makes the type
system even more powerful. While that type system seemed to roughly add λ-calculus-like features at the
type level, this extension will complete the job: we’ll have a complete “copy” of the term-level language in
the type system, including arbitrary functions, variables, and applications.

1 Functions on Types

On a homework problem recently, you showed how to encode sums and products using polymorphism. The
nifty conclusion is that, while we originally added these data types to our language as one-off extensions,
that wasn’t really necessary. You can write terms for the constructors and destructors that work for any
underlying type. For example, you saw a constructor pair and destructors pi1 and pi2 that each worked for any
two types you might want to pack together into a pair. The expression pair int bool, for example, produces
a function that can take a number and a Boolean and construct a pair from them, as in pair int bool 4 true.

One way of seeing this is that you used polymorphism to write your own functions from types to terms. The
“function” pair, when applied to two types, produced a term (i.e., a program) that worked as a specialized
pair constructor. This is nice because we get to think of pair itself, before giving it specific types, as a
self-contained, first-class entity.

However, we did not get the same level of parameterization for the type of pairs. The pair of an int and a
bool in our encoding was written ∀γ.(int → bool → γ) → γ, but there’s no succinct way to summarize the
generic type for any pair. What would it take to write self-contained, first-class entity called, say, capital
Pair such that invoking it as Pair int bool expanded out to the type above? If we had something like this,
we could stop relying on human intuition to see something like int × bool and replace it with our encoding
for that type; the rules for producing complex types out of simpler ones would be formalized as part of the
language.

That’s the motivation for augmenting our language with functions from types to types. We’ll be able define
Pair as a self-contained type operator. This way, you will be able to write the complete type of the pair
constructor as

∀α.∀β.α→ β → (Pair α β)

which you have to admit is nicer to read than

∀α.∀β.α→ β → ∀γ.(α→ β → γ)→ γ

We’ll introduce a language where we can write the type operator Pair as a type-level function using familiar
λ-calculus constructs:

Pair , λα : type. λβ : type.∀γ.(α→ β → γ)→ γ

where we have a new λ construct for binding type variables.

2 Adding Kinds in λω

We’ll define an extension to the simply-typed λ-calculus, λ→, that adds the ability to write type operators.
The language will be called λω. (If you combine type operators and polymorphism, you get a language called
System Fω.)

In λω, the grammar for expressions is the same as in the basic λ→. We’ll make the language of types more
complicated. Instead of just base types and abstractions, we’ll add type variables, type abstractions, and

1

type applications:
τ ::= b | τ1 → τ2 | α | λα : κ. τ | τ1 τ2

Notice that our type abstractions, just like ordinary term-level abstractions, need annotations. These indicate
the “type of the type” for the argument to the type operator. The usual word for “types of types” is kind,
which we’ll denote with a new metavariable κ:

κ ::= type | κ1 ⇒ κ2

The ⇒ symbol denotes the kind of a type-level function.

Now is a good time to pause and think deeply about the fact that this grammar for kinds looks like our
old grammar for types in λ→: there is a base kind, type, and functions on those kinds. We have essentially
described our language of types using a copy of λ→. It’s healthy to wonder, then, why this shouldn’t continue
on forever: why not write types for types of types, and then types for those, and so on into infinity? It’s
possible to do that, and it leads to a realm of research called pure type systems, but going beyond two levels
of types does not seem to be very useful for actual programming.

For what it’s worth, higher-order type operators, which are type-level functions take other type-level functions
as arguments, are also not nearly as useful as more basic type operators. So while it is easy to imagine types
of the kind type⇒ type and even type⇒ type⇒ type, it’s harder to imagine useful examples with the kind
(type⇒ type)⇒ type.

2.1 Typing Rules

Let’s define the typing rules for λω. The rules are going to look similar to our type system for System F,
where we added a second context ∆ to keep track of type variables. In that language, however, all defined
type variables in ∆ mapped to a single kind, type. Now, ∆ will be a partial function from type variables to
kinds κ. The basic rules for variables, abstractions, and application are:

∆ ` τ : type

∆; Γ, x : τ ` x : τ

∆ ` τ1 : type ∆; Γ, x : τ1 ` e : τ2

∆; Γ ` λx : τ1 . e : τ1 → τ2

∆; Γ ` e1 : τ1 → τ2 ∆; Γ ` e2 : τ1

∆; Γ ` e1 e2 : τ2

Aside from adding ∆ to the judgment, these rules look mostly the same as the rules for the simply-typed
λ-calculus. As in System F, the variable and function rules need an extra premise that ensures that the types
are well-formed—and, here, we make it explicit that they must have the kind type. Term-level variables are
not allowed to have types whose kind is type⇒ type, for example.

We will also add one more rule to capture type equivalence. The idea is that we want to let type expressions
“evaluate” to produce concrete types: for example, the type expression Pair int bool should be able to
“expand out” to its full polymorphic type so we can use it in computations. We will define a new relation,
τ1 ≡ τ2, to determine equivalent types. Then, we add a typing rule that lets expressions take on any
equivalent type:

∆; Γ ` e : τ τ ≡ τ ′ ∆ ` τ ′ : type

∆; Γ ` e : τ ′

This rule says that if you have already derived a type τ for an expression, and you know τ is equivalent to
another type τ ′, you can also say that the expression has type τ ′.

2.2 Kinding Rules

Leaving aside type equivalence for a moment, we need a way to determine whether a type τ has kind κ. That
is, we need inference rules to define the judgment ∆ ` τ : κ that we used in the typing rules above. In System

2

F, we defined a similar judgment that just checked that all the type variables used in a type expression were
bound by ∀s. In λω, the kinding rules define the meaning of type abstraction and type application:

∆, α : κ ` α : κ

∆, α : κ1 ` τ : κ2

∆ ` λα : κ1 . τ : κ1 ⇒ κ2

∆ ` τ1 : κ1 ⇒ κ2 ∆ ` τ2 : κ1

∆ ` τ1 τ2 : κ2

These kinding rules for type variables, type abstraction, and type application are identical to the typing
rules for terms in λ→. We also need two more kinding rule for dealing with our only “base kind,” i.e., type.
We will have one axiom that says that the base types have kind type, and another rule that functions on
types are also types:

∆ ` b : type

∆ ` τ1 : type ∆ ` τ2 : type

∆ ` τ1 → τ2 : type

2.3 Type Equivalence

Finally, we need to define that ≡ relation we alluded to above. First, we will make the operator reflexive,
symmetric, and transitive:

τ ≡ τ
τ1 ≡ τ2
τ2 ≡ τ1

τ1 ≡ τ2 τ2 ≡ τ3
τ1 ≡ τ3

Next, we define equivalences for function types, type abstractions, and type applications that just “recurse
through” these structures:

τ1 ≡ τ ′1 τ2 ≡ τ ′2
τ1 → τ2 ≡ τ ′1 → τ ′2

τ ≡ τ ′

λx : κ. τ ≡ λx : κ. τ ′
τ1 ≡ τ ′1 τ2 ≡ τ ′2

τ1 τ2 ≡ τ ′1 τ ′2

Finally, we need one more rule that is the equivalent of β-reduction on types:

(λα : κ. τ1) τ2 ≡ τ1{τ2/α}

With these rules, we have, for example, that (λα : type. int) bool ≡ int.

3

	Functions on Types
	Adding Kinds in
	Typing Rules
	Kinding Rules
	Type Equivalence

