CS 6110 S18 Lecture 31 Linear Type Systems

This lecture explores one of the many ways that logic has influenced programming languages through the
propositions-as-types principle. We’ll show a logical system called linear logic can be transposed into a linear
type system with interesting implications on the programming model. Linear types (and the general area
of substructural type systems, of which linear types are one example) have recently influenced a cadre of
safe programming languages with manual memory management: most prominently, Rust, which was in turn
influenced by Cornell’s own Cyclone [3] language.

1 Linear Logic

In ordinary logic, we think of ¢ F 1 as meaning given that you know ¢ is true, you can also conclude that
1 is true. Once you have proven that 1 is true, that has no bearing on the truth of ¢: that premise is still
just as true as it ever was. For example, if you have the three premises A — B, A — C, and A, you can
prove both B and C' by “reusing” the A premise. In other words, it’s possible to derive:

A—- B A—-C,A-BAC

Linear logic [5] modifies this view to restrict the way that premises are “used” to create conclusions.! The
right intuition is closer to reasoning about physical materials—for example, chemical reactions. In linear
logic, you have to “use” every premise ezxactly once to construct the conclusion. Following the chemical
intuition, where the premises are the reagents (raw materials) and the consequent is the product, no raw
materials are allowed to disappear, and no input molecule is allowed to show up twice in the product—both
would violate the conservation of matter.

In notation, linear logic uses —o to denote its version of “matter-conserving” implication. So whereas you
might read a standard implication A — B as if A is true, then B is true, you can instead read A — B
as given exactly one A, you can consume it to produce exactly one B. Similarly, we introduce a new A-like
operator, ®, so A ® B means you have both of the “chemicals” A and B. In linear logic, therefore, this
version of the above is not derivable:

A—oBA—oCAFBC
You would have to use two copies of A to conclude both B and C"
A—oBA—-CAAFBC

To complete the language, we’ll add one more operator, 6, that is like a linear version of V. Here’s a grammar
for the linear-logic propositions we’ve been discussing;:

pu=A | o | oY | oY

where A is a metavariable that ranges over constants. (This is a simple version of linear logic—other,
more complete versions often have operators, written ! and &, to let the linear style “coexist” with plain
intuitionistic logic.)

IThese notes use the syntactic convention from Wadler [5]. The original formulation of linear logic, by Girard [2], has more
forms that we won’t discuss here.



Here are the core proof rules for this logic:
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Let’s carefully compare the rules for plain intuitionistic logic with their corresponding rules in linear logic.
Take the rule for introducing ® expressions, for example, and compare it to the intuitionistic rule for
introducing A:

| R ) 'k
oAy

The old A rule says that the conclusion and the premise are proved in the same environment, I', as the
consequent. In the linear version for ®, the two contexts from the premises are combined in the consequent.

A-INTRO

This reflects the idea that all our “reagents” must be used to create our “products”: they are not allowed
to disappear, and they are not allowed to be used twice. Using our chemistry analogy, let I' = H, H, O,
meaning that it contains two hydrogen atoms and one oxygen atom, and let ¢ denote a water molecule, so
we have I' F . If A = C,0,0 and % is carbon dioxide, then we also have A - 1. To produce both water
and carbon dioxide, however, we need both sets of reagents, so we write I'; A ¢ ® 1. Atoms cannot just
disappear, so it is not possible to derive that I'; A I ¢ (which would be allowed in an intuitionistic world).
The rule also prevents you from using the raw materials in ' to create two water molecules, ¢ ® ¢: you
would need double the reagents to produce that, i.e., I'\T' F ¢ ® .

The ® elimination rule also differs from A, where there are two rules to obtain either side of the conjunction:

oAy F'FpnAy
——————— A-ELIM-L —————— A-ELIM-R
'k TFy
In a linear world, these rules would let you “destroy” matter. Instead, ® elimination forces you to “consume”
both sides of the conjunction to produce a single result x by proving I', ¢, ¢ F .

The rules for — and @ are more similar to their intuitionistic counterparts, except for how they duplicate
and combine contexts.

To complete the system, we need one more rule to perform some bookkeeping on those contexts. Consider
these three rules from intuitionistic logic:

'y AR Lo,k
— WEAKENING EXCHANGE —  CONTRACTION
N

ATk Loyke

These bookkeeping rules, called the structural rules, are so boring that we left them off of our presentation
of intuitionistic logic from the previous lecture. They say that you are allowed to ignore unnecessary as-
sumptions in your proofs (weakening), that the order of assumptions doesn’t matter (exchange), and that
assuming the same thing twice doesn’t buy you anything (contraction). These rules are important for making
the formal system work out. Notice, for example, that all the other rules presume that the assumption we
need is always at the “rightmost” position in the context. We need the exchange rule to be able to reorder
premises to put the salient one into the right place.

The key difference in linear logic is that it eliminates the weakening and contraction rules but keeps the
exchange rule. Intuitively, this means that you're no longer allowed to ignore assumptions, and you're not
allowed to use them twice. Together, the result is that every assumption is used exactly once in the proof.



2 Linear Types

A linear type system is to a linear logic as a “normal” type system, like the simply-typed A-calculus, is to an
intuitionistic logic. The overall effect is that every variable must be used exactly once. In fact, linear type
systems are part of a larger family of substructural type systems that remove the typey equivalents of the
structural logic rules above. Using different combinations of the structural rules leads to different constraints
on the programming language:

e Linear type systems have exchange only, so every variable must be used exactly once.
e Affine type systems have exchange and weakening, so every variable can be used at most once.

e Relevant type systems have exchange and contraction, so every variable must be used at least once.

e Ordered type systems don’t use any of the three structural rules, so you have to use every variable
exactly once in the order of creation.

But we’ll focus on linear types here. The core idea is that, in order for the typing judgment I' F e : 7 to
hold, the set of variables in I' must be exactly the same as the set of variables in e.

Let’s define a linearly typed version of A™. This language will be very restrictive—the usual thing to do is
to add nonlinear types back into the language too so you can choose which one you need [4]. The grammar
for expressions is the same:

ex=z | Ax:T.e | e em

And the grammar for types includes base types and linear functions:
Tu=b | 11— T
The typing rules follow the proof rules for linear logic:

e:mke:n I'Fep:m—om AlFey:n

riTha:T FFXz:m.e:m —o Ty I'N'AlFeier:m

For example, instead of the old A7 variable rule that says I' b z : 7 as long as I'(z) = 7, the new linear
variable rule requires = to be the only variable in the context.

This language, if were to extend it with integers, would still allow Az : int. z, which has the type int —o int.

However, this larger program:
Af rint —oint. Az sint. f (f z)

is not well-typed, even though its plain A~ equivalent is perfectly fine, because it reuses f twice. Even the
seemingly mundane Ax : int.z + x does not have a type.

3 Safe Manual Memory Management

This restriction may seem a little silly when dealing with integers: who cares how many times you use an
integer? But imagine a language where there are types that represent consumable computational resources:
allocated memory, open file handles, socket connections, or files in the filesystem.

If you’ve ever written a console program that uses Unix’s standard input and standard output streams, for
example, you know that you have to be very careful about how you consume stdin. If your program tries to
read the entirety of stdin (sys.stdin.read() in Python) more than once, for example, it will hang. If you forget
to read from it at all sometimes, then other programs that pipe large amounts of data into your process will



hang when they fill up the OS buffer. It might be nice to have a compile-time guarantee that your program,
no matter how it executes, will read stdin exactly once. That’s the idea with practical linear type systems:
they don’t use them for every value in the program; just the ones where resource consumption really matters.

One particular resource has recently been shown to be a good match for linear (and affine) type systems:
memory. Specifically, programming languages can use linear types to get the “best of both worlds” between
memory-safe, garbage-collected languages like Java and “memory-unsafe” languages like C and C++ that
use manual memory management. People like the fact that Java rules out use-after-free and double-free
bugs, for example, but garbage collection comes at a cost. Video games, for example, often can’t afford to
have the garbage collector take control at seemingly random times and delay a frame from being rendered,
leading to unpleasant jitter. So is it possible to have manual, deterministic memory management with malloc
and free but still be sure that you never dereference a pointer after freeing it?

That’s the goal of a modern genre of memory-safe systems languages. The most prominent research language
that uses this strategy is Cyclone [3], which was developed at Cornell in the early 2000s. More recently, Rust
has adopted many of the ideas from Cyclone in the context of a full-fledged, industrial language. Rust takes
it a step further and hides the malloc and free calls from you altogether.

To realize this GC-free, memory-safe vision, we will design a language with linearly-typed pointers. The
main problem we’ll encounter is that we’ll want to “use” a pointer multiple times, in the sense that “using”
consists of loading and storing through the pointer, but free it exactly once.

3.1 Unrestricted Pointers

Imagine adding malloc and free to the A-calculus. First, let’s write a C-like version without memory safety.
We’ll make malloc behave sort of like the ref expression from our references extension, so we can write
programs like this:

let p = malloc 4 in

store p ((load p) + 38);

free p

We’ll use expressions named store and load instead of := and ! as in our old FL! language, but the meaning
is the same. The types for this extension would look like this:

'ke:r 'kFe:Tptr I'He:7ptr T'teq:7ptr I'kFey: 7

I' - malloce: 7 ptr I' I free e : unit I'Floade: T I' I store e1 €3 : unit

The problem, of course, is that we can now write malloc 4 and never free the pointer, which leaks memory
if we don’t have a garbage collector. We can also write:

let p = malloc4 in
free p;
free p

which will crash (i.e., get stuck) when it tries to free the memory twice. To rule out both of these problems,
we want to require the program to call free exactly once for every malloc’d pointer.

3.2 Linear Pointers

Now imagine the same type extension in a linearly-typed A-calculus. When a pointer p is in a context T,
an expression e is well-typed in I" if and only if it refers to p exactly once. That means that our double-free
example above is now illegal, and so is any program that mallocs a pointer and then drops it without freeing
it.



But we've created a new problem: the first example above, which innocuously loads and stores a pointer p
before freeing it, is also illegal because it uses p three times. A naive linear type system would prevent you
from doing anything useful with a pointer—all this language can do is allocate and free memory.

To fix this, the idea is to have safe uses of linear values—ones that neither create nor destroy the value—
produce a new copy of the pointer to indicate that it wasn’t consumed. You can think of a linear pointer
value as carrying an obligation to free the pointer’s memory. When you call a function, for example, that
function has two choices: it can either free the memory itself, or it return the pointer back to you to delegate
the responsibility for freeing the memory.

In particular, we might model load and store as linear functions:
store : Vo o ptr X o —o o ptr load : Ve a ptr —o (v ptr x «)

Both functions now “return” a pointer, and load’s result is now a pair consisting of the value from the heap
and another copy of the input pointer. Our first example is now a bit more inconvenient to write, but it
typechecks:

let p = malloc 4 in

let (p',n) = load p in

let p” = store p (n + 38) in

free p”’

This works, but there are many more details to work out to turn this sketch into a usable programming
language. We’d like to hide the boilerplate involved in “threading through” copies of p, for example, so we
don’t need to come up with an ever-expanding set of names like p’ and p”. We also need a way to integrate
linear types with nonlinear types—for example, there is probably no good reason to give int the same linear
restrictions as int ptr, for example. For more on linear typing in Cyclone, and a stepping stone to Rust’s
lifetime tracking, I recommend the paper “Linear Regions are All You Need” by Fluet et al. [1].
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