
CS 6110 S18 Lecture 25 Type Inference and Unification

1 Type Inference

Type inference refers to the process of determining the appropriate types for expressions based on how they
are used. For example, OCaml knows that in the expression (f 3), f must be a function (because it is applied
to something, not because its name is f!) and that it takes an int as input. It knows nothing about the
output type. Therefore the type inference mechanism of OCaml would assign f the type int -> ’a.

# fun f -> f 3;;

- : (int -> ’a) -> ’a = <fun>

There may be many different occurrences of a symbol in an expression, all leading to different typing
constraints, and these constraints must have a common solution, otherwise the expression cannot be typed.

# fun f -> f (f 3);;

- : (int -> int) -> int = <fun>

# fun f -> f (f "hi");;

- : (string -> string) -> string = <fun>

# fun f -> f (f 3, f 4);;

Error: This expression has type ’a * ’a

but an expression was expected of type int

In the first example, how does it know that the output type of f is int? Because the input type of f is int,
and the output of f is fed into f again, so the output type of f has to be the same as the input type of f.

If a program is well-typed, then a type can be inferred. For example, consider the program

let square = λz. z ∗ z in
λf . λx. λy.
if (f x y)

then (f (square x) y)
else (f x (f x y))

We are applying the multiplication operator to z, therefore we must have z : int, thus λz. z ∗z : int→ int and
square : int → int. We know that the type of f must be something of the form f : σ → τ → bool for some
σ and τ , since it is applied to two arguments and its return value is used in a conditional test. Since f is
applied to the value of square x as its first argument, it must be that σ = int. Since f is applied to the value
of f x y as its second argument, it must be that τ = bool. Thus f must be of type int→ bool→ bool, x must
be of type int, and y must be of type bool. The value of the program is a function that takes inputs f , x,
and y, and returns a bool. Thus the type of the entire program is (int→ bool→ bool)→ int→ bool→ bool.

2 Unification

Both type inference and pattern matching in OCaml are instances of a very general mechanism called
unification. Briefly, unification is the process of finding a substitution that makes two given terms equal.
Pattern matching in OCaml is done by applying unification to OCaml expressions, whereas type inference is
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done by applying unification to type expressions. It is interesting that both these procedures turn out to be
applications of the same general mechanism. There are many other applications of unification in computer
science; for example, the programming language Prolog is based on it.

Let us write sS for the result of applying a substitution S to the term s. For example,

f(x, h(x, y)){g(y)/x, z/y} = f(g(y), h(g(y), z)),

where the substitution operator {g(y)/x, z/y} applied to a term simultaneously substitutes g(y) for x and
z for y. The substitution is simultaneous, not sequential. In this example, sequential substitution gives a
different result:

f(x, h(x, y)){g(y)/x}{z/y} = f(g(y), h(g(y), y)){z/y} = f(g(z), h(g(z), z)).

The essential task of unification is to find a substitution S that unifies two given terms (makes them equal).
Thus, given s and t, we want to find S such that sS = tS. Such a substitution S is called a unifier for s and
t. For example, given the terms

f(x, g(y)) f(g(z), w) (1)

the substitution

S = {g(z)/x, g(y)/w} (2)

would be a unifier, since

f(x, g(y)){g(z)/x, g(y)/w} = f(g(z), w){g(z)/x, g(y)/w} = f(g(z), g(y)).

Note that this is a purely syntactic definition; the meaning of expressions is not taken into consideration
when computing unifiers.

Unifiers do not necessarily exist. For example, the terms x and f(x) cannot be unified, since no substitution
for x can make the two terms equal.

Even when unifiers exist, they are not necessarily unique. For example, the substitution

T = {g(f(a, b))/x, f(b, a)/y, f(a, b)/z, g(f(b, a))/w}

is also a unifier for the two terms (1):

f(x, g(y))T = f(g(z), w)T = f(g(f(a, b)), g(f(b, a))).

However, when a unifier exists, there is always a most general unifier (mgu) that is unique up to renaming.
A unifier S for s and t is a most general unifier (mgu) for s and t if

• S is a unifier for s and t,

• any other unifier T for s and t is a refinement of S; that is, T can be obtained from S by doing further
substitutions.

For example, the substitution S in the example above is an mgu for f(x, g(y)) and f(g(z), w). The unifier
T is a refinement of S, since T = S U , where

U = {f(a, b)/z, f(b, a)/y}.
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Note that

f(x, g(y))S U = f(x, g(y)){g(z)/x, g(y)/w}{f(a, b)/z, f(b, a)/y}
= f(g(z), g(y)){f(a, b)/z, f(b, a)/y}
= f(g(f(a, b)), g(f(b, a)))

= f(x, g(y))T.

We can compose substitutions, as we did with S U . This is the substitution that first applies S, then applies
U to the result. The composition is also a substitution.

3 Unification Algorithm

The unification algorithm is known as Robinson’s algorithm (1965). We need unification for not just for a
pair of terms, but more generally, for a set of pairs of terms. We say that a substitution S is a unifier for a
set of pairs {(s1, t1), . . . , (sn, tn)} if siS = tiS for all 1 ≤ i ≤ n.

The unification algorithm is given in terms of a function Unify that takes a set of (unordered) pairs of terms
(s, t) and produces their mgu, if it exists. If E is a set of pairs of terms, then E {t/x} denotes the result of
applying the substitution {t/x} to all the terms in E.

• Unify({(x, t)} ∪ E) , {t/x}Unify(E {t/x}) if x /∈ FV(t)

• Unify(∅) , I (the identity substitution x 7→ x)

• Unify({(x, x)} ∪ E) , Unify(E)

• Unify({(f(s1, . . . , sn), f(t1, . . . , tn))} ∪ E) , Unify({(s1, t1), . . . , (sn, tn)} ∪ E).

In the first rule, {t/x} denotes the substitution that substitutes t for x, and {t/x}Unify(E {t/x}) denotes the
composition of {t/x} and Unify(E {t/x}). Since we write substitutions on the right, we follow the convention
that composition is from left to right; thus S T means, “do S, then do T”.

The algorithm will fail if it ever encounters a pair (x, t) such that x 6= t but x occurs in t or a pair
(f(s1, . . . , sm), g(t1, . . . , tn)) such that f 6= g. In either case, no substitution can unify the two terms.

4 Type Inference and Unification

Now we show how to do type inference using unification on type expressions. This technique gives the most
general type (mgt) of any typable term; any other type of this term is a substitution instance of its most
general type. Recall the Curry-style simply typed λ-calculus with syntax

e ::= x | e1 e2 | λx. e τ ::= α | τ1 → τ2

and typing rules

Γ, x : τ ` x : τ
Γ ` e1 : σ → τ Γ ` e2 : σ

Γ ` (e1 e2) : τ

Γ, x : σ ` e : τ

Γ ` λx. e : σ → τ
.

For the language of types, the last unification rule translates to

• Unify({(s→ s′, t→ t′)} ∪ E) , Unify({(s, t), (s′, t′)} ∪ E).
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The problem is that any type derivation starts with assumptions about the types of the variables in the
form of a type environment Γ, but without a type environment or an annotation as in Church style, we do
not know what these are. However, we can observe that the form of the subterms impose constraints on the
types. We can write down these constraints and then try to solve them.

Suppose we want to infer the type of a given λ-term e. Without loss of generality, suppose we have α-
converted e so that no variable is bound more than once and no variable with a binding occurrence λx also
occurs free.1

Let e1, . . . , em be an enumeration of all occurrences of subterms of e. We first assign a unique type variable
αi to each ei, 1 ≤ i ≤ m, as well as a unique type variable βx to each variable x. Then we take the following
constraints:

• if ei is an occurrence of a variable x, the constraint αi = βx;

• if ei is an occurrence of an application ej ek, the constraint αj = αk → αi; and

• if ei is an occurrence of an abstraction λx. ej , the constraint αi = βx → αj .

This gives us a list of pairs (σ, τ) of type expressions representing type constraints σ = τ imposed by the
typing rules above.

Now we do unification on the constraints and apply the resulting substitution to the type variable αe. The
result is the mgu of e.

4.1 An Example

Here is an example of the algorithm applied to the combinator S = λxyz. xz(yz). Let us mark the second
occurrence of z as z′ to distinguish it from the first occurrence, although they are occurrences of the same
variable z. Each occurrence of a subterm generates a constraint:

e1 = λx. λy. λz. xz(yz′) α1 = βx → α2

e2 = λy. λz. xz(yz′) α2 = βy → α3

e3 = λz. xz(yz′) α3 = βz → α4

e4 = xz(yz′) α5 = α8 → α4

e5 = xz α6 = α7 → α5

e6 = x α6 = βx

e7 = z α7 = βz

e8 = yz′ α9 = α10 → α8

e9 = y α9 = βy

e10 = z′ α10 = βz.

1This assumption is known as the Barendregt variable convention after Henk Barendregt.
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Solving these constraints using Robinson’s algorithm yields

α1 = (α7 → α8 → α4)→ (α7 → α8)→ α7 → α4

α2 = (α7 → α8)→ α7 → α4

α3 = α7 → α4

α5 = α8 → α4

α6 = α7 → α8 → α4

α9 = α7 → α8

α10 = α7

βx = α7 → α8 → α4

βy = α7 → α8

βz = α7

so we see that the most general type of e1 is (α7 → α8 → α4)→ (α7 → α8)→ α7 → α4.
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