
CS 6110 S18 Lecture 15 First-Class Continuations

1 First-Class Continuations

Some languages expose continuations as first-class values. Examples of such languages include Scheme and
SML/NJ. In the latter, there is a module that defines a continuation type α cont representing a continuation
expecting a value of type α. There are two functions for manipulating continuations:

• callcc : (α cont→ α)→ α (callcc f) passes the current continuation to the function f

• throw : α cont→ α→ β (throw k v) sends the value v to the continuation k.

The call (callcc f) passes the current continuation corresponding to the evaluation context of the callcc itself
to the function f of type α cont → α. The current continuation k is of type α cont. When called with this
continuation, f may evaluate to a value of type α, and that is the value of the expression (callcc f) that
called it. However, the continuation k passed to f may be called with a value v of type α by (throw k v) with
the same effect. It is up to the evaluation context of the callcc to determine which. Thus (callcc λk. 3) and
(callcc λk. throw k 3) have the same effect.

1.1 Semantics of First-Class Continuations

Using the translation approach we introduced earlier, we can easily describe these mechanisms. Suppose we
represent a continuation value for the continuation k by tagging it with the integer 7. Then we can translate
callcc and throw as follows:

Jcallcc eKρk = JeKρ(check-fun (λf . f (7, k) k))

Jthrow e1 e2 Kρk = Je1 Kρ(check-cont (λk′ . Je2 Kρk′))

The key to the added power is the non-linear use of k in the callcc rule. This allows k to be reused any
number of times.

1.2 Implementing Threads with Continuations

Once we have first-class continuations, we can use them to implement all the different control structures we
might want. We can even use them to implement (non-preemptive) threads, as in the following code that
explains how concurrency is handled in languages like OCaml and Concurrent ML:

type thread = unit cont

let ready : thread queue = new_queue (* a mutable FIFO queue *)

let enqueue t = insert ready t

let dispatch() = throw (dequeue ready) ()

let spawn (f : unit -> unit) : unit =

callcc (fun k -> (enqueue k; f(); dispatch()))

let yield() : unit = callcc (fun k -> enqueue k; dispatch())

1



The interface to threads consists of the functions spawn and yield. The spawn function expects a function f
containing the work to be done in the newly spawned thread. The yield function causes the current thread
to relinquish control to the next thread on the ready queue. Control also transfers to a new thread when
one thread finishes evaluating. To complete the implementation of this thread package, we just need a queue
implementation. CML has preemptive threads, in which threads implicitly yield automatically after a certain
amount of time; this requires just a little help from the operating system.

2


	First-Class Continuations
	Semantics of First-Class Continuations
	Implementing Threads with Continuations


