CS 6110 S18 Lecture 14 Continuations

1 Continuation-Passing Style

Consider the statement if x < 0 then x else x4+ 1. We can think of this as (Ay. if y then z else z+1) (x < 0).
To evaluate this, we would first evaluate the argument x < 0 to obtain a Boolean value, then apply the
function Ay.if y then x else £+1 to this value. The function A\y.if y then = else z+1 is called a continuation,
because it specifies what is to be done with the result of the current computation in order to continue the
computation.

Given an expression e, it is possible to transform the expression into a function that takes a continuation k
and applies it to the value of e. The transformation is applied recursively. This is called continuation-passing
style (CPS). There are a number of advantages to this style:

e The resulting expressions have a much simpler evaluation semantics, since the sequence of reductions
to be performed is specified by a series of continuations. The next reduction to be performed is always
uniquely determined, and the remainder of the computation is handled by a continuation. Thus
evaluation contexts are not necessary to specify the evaluation order.

e In practice, function calls and function returns can be handled in a uniform way. Instead of returning,
the called function simply calls the continuation.

e In a recursive function, any computation to be performed on the value returned by a recursive call can
be bundled into the continuation. Thus every recursive call becomes tail-recursive. For example, the
factorial function

factn = if n =0 then 1 else n xfact(n — 1)
becomes
fact' nk = if n=0 then k1 else fact’ (n — 1) (\v. k (n * v)).

One can show inductively that fact' n k = k (fact n), therefore fact’ n Az. x = fact n. This transformation
effectively trades stack space for heap space in the implementation.

e Continuation-passing gives a convenient mechanism for non-local flow of control, such as goto state-
ments and exception handling.

2 CPS Semantics

Our grammar for the A-calculus was:
e == x| Az.e | eger
Our grammar for the CPS A-calculus will be:
v o=z | Az.e e = VU - Up

This is a highly constrained syntax. Barring reductions inside the scope of a A-abstraction operator, the
expressions v are all irreducible. The only reducible expression is vgvy - -+ v,. If n > 1, there exactly one
redex vg vy, and both the function and the argument are already fully reduced. The small step semantics
has a single rule

M.e)v — e{v/z},

and we do not need any evaluation contexts.

The big step semantics is also quite simple, with only a single rule:

e{v/z} |
Az.e)v v’

The resulting proof tree will not be very tree-like. The rule has one premise, so a proof will be a stack of
inferences, each one corresponding to a step in the small-step semantics. This allows for a much simpler
interpreter that can work in a straight line rather than having to make multiple recursive calls.

The fact that we can build a simpler interpreter for the language is a strong hint that this language is
lower-level than the A-calculus. Because it is lower-level (and actually closer to assembly code), CPS is
typically used in functional language compilers as an intermediate representation. It also is a good code
representation if one is building an interpreter.

3 CPS Conversion

Despite the restricted syntax of CPS, we have not lost any expressive power. Given a A-calculus expression
e, it is possible to define a translation [e] that translates it into CPS. This translation is known as CPS
conversion. It was first described by John Reynolds. The translation takes an arbitrary A-term e and
produces a CPS term [e], which is a function that takes a continuation k as an argument. Intuitively, [e]k
applies k to the value of e.

5 [v]k for primitive values v and any variable

We want our translation to satisfy e —» v iff [e]k
CBV CPS

k ¢ FV(e), and e ficpy iff [e]k frcps.

The translation is (adding numbers as primitive values):

[n]k = kn

[z]k & kx
Dz.e]k = k(x.[e]) = k(ak'.[e]k)
leoer]k = [eo](Mf-[e1](Mv. fuk)).

(Recall [e]k £ € really means [e] = \k.

a)\
N

3.1 An Example

In the CBV A-calculus, we have
Azy.x)1 — Ay.1
Let’s evaluate the CPS-translation of the left-hand side using the CPS evaluation rules.

[Azy.2) 1]k = [Az. y.z](Af.[1](Mv. fok))
= (Af.[1](Aw. fok)) (Az. [Ay. z])

= [1]w.(Az. [Ay.z])vk)
= (. (Az.[Ay.z])vk)l
= (Az.[Ay.z]) 1k

= [Ay.1]k.

4 CPS and Strong Typing

Now let us use CPS semantics to augment our previously defined FL language translation so that it supports
runtime type checking. This time our translated expressions will be functions of p and k denoting an
environment and a continuation, respectively. The term E[e]pk represents a program that evaluates e in
the environment p and sends the resulting value to the continuation k.

As before, assume that we have an encoding of variable names z and a representation of environments p
along with lookup and update functions lookup p “z” and update p v “z”.

In addition, we want to catch type errors that may occur during evaluation. As before, we use integer tags
to keep track of types:
Er £ 0 Null £ 1 Bool £ 2 Num £ 3 Pair £ 4 Fun £ 5

A tagged value is a value paired with its type tag; for example, (Bool,true). Using these tagged values, we
can now define a translation that incorporates runtime type checking:

E[x]pk = k(lookup p “z)
Elblpk 2 k(Bool,b)
Enlpk = k(Num,n)
E[O]pk =k (Null,nil)
El(er,-- . en)]pk = Eler]p(Ax1.E[(e2, ... en)]p(Av2. k (Pair, (z1,72)))), n > 1
Ellet x = ey inex]pk = Efer] p(\p.E[e2] (update p p “a”)k)
E[Mz.e]pk = k(Fun,\k’.E[e] (update p v “z”)k’)
Elerror]pk = k(Err,0).

Now a function application can check that it is actually applying a function:
Elever]pk = Efeo]p(Ap.let (¢, f) = p in if t # Fun then & (Err,0) else E[e1] p(\v. fvk))
We can simplify this by defining a helper function check-fn:
check-fn £ Xkp.let (t, f) = p in if t # Fun then k (Err,0) else kf.

The helper function takes in a continuation and a tagged value, checks the type, strips off the tag, and passes
the raw (untagged) value to the continuation. Then

Eleoer]pk = E[eo]p(check-fn (Af.E[er]p(\v. fuk))).
Similarly,

Eleo] p(check-bool (Ab.if b then E[eq] pk else E[e2] pk))
Ele] p(check-pair (At. k (#nt))).

E[if eg then ey else ex] pk
El#ne] pk

> 1>

5 CPS Semantics for FL!
5.1 Syntax

Since FL! has references, we need to add a store o to our notation. Thus we now have translations with the
form E[e] pko, which means, “Evaluate e in the environment p with store o and send the resulting value
and the new store to the continuation k£.” A continuation is now a function of a value and a store; that is,
a continuation k should have the form Avo. --- .

The translation is:

e Variable: £[z]pka £ k (lookup p “z”) 0.

If we think about this translation as a function and n-reduce away the o, we obtain

E[z]pk = Mo.k(lookup p “z”)o = k (lookup p “x”).

Note that in the n-reduced version, we have the same translation that we for FL. In general, any expression
in FL! that is not state-aware can be n-reduced to the same translation as FL. Thus in order to translate to
FL!, we need to add translation rules only for the functionality that is state-aware.

We assume that we have a type tag Loc for locations and check-loc for tagging values as locations and
checking those tags. We also assume that we have extended our lookup and update functions to apply to
stores.

Elrefe]pko = Ele]p(\va’.let (¢,0") = (malloco’ v) in k(Loc, £) 0")
Elle]pk = E[e] p(check-loc (Mo’ . k (lookup o’ “¢7)a"))
Eler :=ea]pk = E[e1]p(check-loc (M. E[ea] p(Ava’. k (Null,nil) (update o’ v “¢7)))).

6 Exceptions

An exception mechanism allows non-local transfer of control in exceptional situations. It is typically used to
handle abnormal, unexpected, or rarely occurring events. It can simplify code by allowing programmers to
factor out these uncommon cases. OCaml also uses them for not-found conditions when searching lists and
similar data structures, a questionable design decision; Standard ML uses option for this purpose.

To add an exception handling mechanism to FL, we first extend the syntax:
e == ... | raisese | trye;handle(sx)es

Informally, the idea is that handle provides a handler es to be invoked when the exception named s is
encountered inside the expression e;. To raise an exception, the program calls raise s e, where s is the name
of an exception and e is an expression that will be passed to the handler as its argument .

Most languages use a dynamic scoping mechanism to find the handler for a given exception. When an
exception is encountered, the language walks up the runtime call stack until a suitable exception handler is
found.

6.1 Exceptions in FL

To add support for exceptions to our CPS translation, we add a handler environment h, which maps ex-
ception names to continuations. We also extend our lookup and update functions to accommodate handler
environments. Applied to a handler environment, lookup returns the continuation bound to a given exception
name, and update rebinds an exception name to a new continuation.

Now we can add support for exceptions to our translation:

Eraisese]pkh = E[e]p(lookup h “s”)h
Etryes handle (sx) expkh = E[e1] pk(update h (Av.Eez] (update p v “x”)kh) “s”)
E[Az.e]pkh = k(tag-fun (A\k'h .E[e](update p v “z”)K' 1))
=k (tag-fun (Av.&[e] (update p v “x”)))
Eleoer]pkh = Eleo] p(check-fun (A\f.E[e1] p(Av. fvkh)h))h

where tag-fun tags a function value with its runtime type.

There are some subtle design decisions captured by this translation. For example, note that in try...handle,
x is in scope in eg, but s is not. Thus if es attempts to raise exception s in trye; handle (s z) ez, in this
translation es will not be invoked again. That is, eo cannot be invoked recursively.

6.2 Exceptions with Resumption

The exception mechanism above has the property that raising an exception terminates execution of the
evaluation context. Most modern programming languages have exceptions with this termination semantics.
A different approach to exceptions is to allow execution to continue at the point where the exception was
raised, after the exception handler gets a chance to repair the damage. This approach is known as exceptions
with resumption semantics. In practice it seems to be difficult to use these mechanisms usefully. The
Cedar/Mesa system supported both kinds of exceptions and found that resumption-style exceptions were
almost never used, and often resulted in bugs when they were.

Operating system interrupts are one place where resumption semantics can be seen. When a process receives
an interrupt, the interrupt handler is run, and then execution continues at the point in the program where
the interrupt happened.

We can give a translation that captures the semantics of resumption-style exceptions. We add two constructs
to FL:
e ::= interruptse | trye; handle(sz)es

The translation makes the exception-handling environment A a mapping from exception names to functions
rather than to continuations:

[interruptse]pkh = [e]p(Av. (lookup h “s”)vk)h
[try e1 handle (s) ex] pk [e1] pk(update h (\k'. [ex] pk'h) “s7)

This translation shows that with resumption semantics, the exception handler is really a dynamically bound
function that is invoked at the point where the exception happens.

	Continuation-Passing Style
	CPS Semantics
	CPS Conversion
	An Example

	CPS and Strong Typing
	CPS Semantics for FL!
	Syntax

	Exceptions
	Exceptions in FL
	Exceptions with Resumption

