
CS 6110 S16 Lecture 36 π-calculus 6 May 2016

1 Introduction

A fundamental limitation of CCS is that the communication structure of a process is fixed. For example, it
is easy to show that the set {α | P α

→P ′} is finite. The π-calculus is a similar, but more expressive calculus
that addresses this deficiency.

2 Syntax

P ::= 0 Inert

| x(y).P Receive

| x⟨y⟩.P Send

| P1 | P2 Parallel composition

| νx. P Restriction

| !P Replication

Compared to CCS, note that instead of simply interacting on a named channel, we can now communicate
channel names! In addition, π-calculus does not have summation or top-level definitions. Again, we work
up to α equivalence for restrictions.

3 Labeled Transition System

Structural congruence is defined as follows:

P |Q ≡ Q|P
(P |Q)|R ≡ P |(Q|R)P |0 ≡ P
νx. 0 ≡ 0
νx. (P |Q) ≡ (νx.P)|Q if x ̸∈ fv(Q)
!P ≡!P |P

Reduction is defined as follows:

x⟨y⟩. P |x(z).Q → P |Q{y/z}
P → P ′

P |Q → P ′|Q
P → P ′

νx. P → νx. P ′

P ≡ Q Q → Q′ Q′ ≡ P ′

P ′ → P ′

The definition of the labeled transition system is left as an exercise.

1

4 Programming in the π-calculus

The rest of this lecture will explore how we can implement various programming constructs in π-calculus.

4.1 Polyadic Communication

Although π-calculus send/receive are unary, we can encode polyadic communication as follows:

l⟨x1, . . . , xn⟩ ≜ νp. l⟨p⟩. p⟨x1⟩. . . . p⟨xn⟩
l(y1, . . . , yn) ≜ l(p). p(y1). . . . p(yn)

Intuitively, this encoding works by first creating a fresh channel name p, sending p along l, and then sending
the actual names x1, . . . , xn along p. The use of a fresh channel ensures that multiple senders and receivers
will not interfere with each other.

4.2 Booleans

We can encode booleans as processes that receive names of t and f channels, and then send on the corre-
sponding channel.

True(b) ≜ !b(t, f).t

False(b) ≜ !b(t, f).f

Cond(P,Q)(b) ≜ νt, f(b⟨t, f⟩.(t().P + f().Q))

Note that we put a ! in front of processes to turn them into servers create arbitrary numbers of the original
process. This prevents their destruction after sending or receiving a message.

4.3 Internal Choice

Although π-calculus does not have summation, we can encode a limited form of “internal” choice:

P ⊕Q ≜ νc. (c⟨⟩ | c().P | c().Q)

4.4 References

We can also encode mutable references as processes.

Ref (r, w, i) ≜ νl. l⟨i⟩ | Read(l, r) | Write(l, r)

Read(l, r) ≜ νl. !r(c). l(v).(c⟨v⟩ | l⟨v⟩)
Write(l, w) ≜ νl. !w(c, v′). l(v).(c⟨⟩ | l⟨v′⟩)

2

4.5 λ-calculus

Finally, we can encode the λ-calculus into the π-calculus as follows:

JxK(p) ≜ x⟨p⟩Jλx. eK(p) ≜ p(x, q).JeK(q)Je1, e2K(p) ≜ νq(Je1K(q) | νy(q⟨y, p⟩ |!y(r).Je2K(r))
Note the similarity to continuation-passing style.

3

