
CS 6110 S16 Lecture 34 Existential Types 29 April 2016

1 Modeling Objects with Recursive Types

We have been exploring language semantics in a largely reductionist way, by breaking apart complex mech-
anisms into simpler components. Objects are an example of a complex mechanism that we had hoped our
studies would shed some light on. However, if we try to encode objects in terms of the simpler constructs
we have seen so far, we see that there is something missing.

Consider the following Java implementation of integer sets as binary search trees:

class Intset {

Intset union(Intset s) { ... }

boolean contains(int n) {

if (n < value) return (left != null) && left.contains(n);

else if (n > value) return (right != null) && right.contains(n);

else return n == value;

}

int value;

Intset left, right;

}

One of the challenges of modeling objects is that they can refer to themselves. For example, the code of the
contains method is implicitly recursive with respect to the object this, because the values left and right are
actually this.left and this.right.

With recursive types and records we can approximate this in the typed λ-calculus. First, there is a type
Intset being declared:

Intset = µS.{union : S → S, contains : int → bool, value : int, left : S, right : S}

We can construct “objects” of this type, assuming we can take a fixpoint over objects (which is possible as
long as only methods can refer to the fixpoint):

let s = foldIntset (rec this: { union : Intset → Intset, ... }. // the unfolding of Intset

{

union = λs’ : Intset. ...

contains = λn : int.

if m < this.value then case this.left of

λs’:Intset.((unfold s’).contains) n

else if m > this.value then case this.right of

λs’:Intset.((unfold s’).contains) n

else n = this.value

}

This whole expression has type Intset and will behave mostly like an object. There are a couple of ways in
which this falls short of what Java objects provide: first, there is no inheritance, and we will have trouble
extending this code to support inheritance. Second, the internals of the class are fully exposed to any other
objects or functions that might use it. We need some way of providing a restricted interface to our objects
and classes. It is this second problem we will talk about now.

1

2 Encapsulation

While we can encode objects currently, we are missing one of the key concepts of object-oriented program-
ming: data abstraction, which in the object-oriented programming world sometimes is called information
hiding or encapsulation. This is a feature in which the type system hides internals of objects, enforcing
an abstraction barrier between the implementer and the clients of the class. This abstraction barrier helps
keep different parts of the system loosely coupled so they can be updated and maintained without close
coordination.

Data abstraction is offered in its purest form by existential types. The idea is that we can hide part of a type
τ and replace it with a type variable α. We write ∃α.τ to represent this type, where α may be mentioned
inside τ . But because this type does not say what α is, no code receiving a value of this type can make use
of knowledge of the hidden part of this type.

For example, in the Intset example we would write:

∃α.µS. {

union: S → S
contains: int → bool

private: α
}

We can think of values of this type as being a kind of pair consisting of a type and a value. That is, the pair
[τ, v] : ∃α.σ where v : σ{τ/α}. To manipulate these values, we introduce two new operators, “pack” (the
introduction form) and “unpack” (the elimination form).

These two forms look, and typecheck, as follows:

∆;Γ ⊢ e{τ/α} : σ{τ/α} ∆ ⊢ ∃α.σ : type

∆;Γ ⊢ [τ, e]∃α.σ : ∃α.σ

∆;Γ ⊢ e : ∃α.σ ∆, α : type; Γ, x : σ ⊢ e′ : τ ′ ∆ ⊢ τ ′ : type
(α /∈ ∆)

∆;Γ ⊢ let [α, x] = e in e′ : τ ′

Just as in the case of polymorphism, we had to add the context ∆ in order to make sure that no types refer
to unbound type variables.

We need a reduction that unpacks an existentially quantified term:

let [α, x] = [τ, v]∃α.σ in e → e{τ/α, v/x}

There are also additional evaluation contexts:

E ::= . . . | [τ, E] | let [α, x] = E in e | let [α, x] = v in E

Here is a simple example illustrating that we can pack different types into an implementation of a value
without the client being able to tell:

let p1 = [int, (5, λn : int. n = 1)]∃α.α∗(α→bool) in

let [α, x] = p1 in ((right x) (left x))

let p2 = [bool, (true, λb : bool.¬b)]∃α.α∗(α→bool) in

let [α, x] = p2 in ((right x) (left x))

2

3 Existential Types and Constructive Logic

The existential types get their names partly because they correspond to inference rules of constructive logic
involving the ∃ quantifier:

Typing :

∆;Γ ⊢ e{τ/α} : σ{τ/α} ∆ ⊢ ∃α.σ : type

∆;Γ ⊢ [τ, e]∃α.σ : ∃α.σ

∆;Γ ⊢ e : ∃α.σ ∆, α : type; Γ, x : σ ⊢ e′ : τ ′ ∆ ⊢ τ ′ : type
(α /∈ ∆)

∆;Γ ⊢ let [α, x] = e in e′ : τ ′

Constructive Logic:

Γ ⊢ φ{A/X} Γ ⊢ A :Prop

Γ ⊢ ∃X.φ

Γ ⊢ ∃X.φ Γ, X :Prop, φ ⊢ φ′
(X /∈ FV (φ′))

Γ ⊢ φ′

4 Existentials and Modules in ML

There is a rough correspondence between existential types and the ML module mechanism. For example, an
ML signature Rational defined as:

module type Rational =

sig

type t

val plus: t → t → t

...

end

corresponds to the existential type ∃α.{plus : α → α → α, . . . }. An ML module that implements this
signature is similar to an extensional value:

struct

type t = int * int

let plus x y = ...

...

end

corresponds to [int ∗ int, {plus = λx : int ∗ int. λy : int ∗ int. . . . , . . . }]∃α.{plus:α→α→α,... }.

Unpacking is similar to the open operation on modules.

5 Strong Existentials

So far the existential values we have seen are weak in the sense that the values of the abstract type α cannot
really escape the module; they can exist only within an unpack term. This means we cannot write code
corresponding to this ML code:

let x : Rational.t = Rational.zero in

Rational.plus(x,x)

3

To get access to several modules represented as existentials, it will be necessary to unpack them all at once
at the top of the program, to create a scope in which the abstract types can be mentioned.

The idea of strong existentials is to allow the hidden type to be mentioned outside. We extend the type
language with new dependent module types with the syntax e.α:

τ ::= . . . | ∃α.τ | e.α (e is pure)

What makes the type e.α a dependent type is that it is a type that mentions a term, something we have
not seen before. The meaning of the type depends on something that is not necessarily known until run
time. In general we will want to place some restrictions on what terms can be used in this position, to
ensure soundness and to make type checking tractable. Here we use the description “pure” to capture these
restrictions, though there is a whole spectrum of choices about what terms can be permitted, involving
different tradeoffs in expressive power and tractability.

Certainly we do not want e to be something that has side effects. A simple choice is that e must be a variable
name x. A more complicated choice is to allow record selector expressions of the form x.y.z. Some limited
use of function application is the next step up, bringing us to roughly the expressive power of the SML and
OCaml module systems, with their nested modules and functors.

In any case, we can now use dependent module types to express the typing rule for unpack:

∆;Γ ⊢ e : ∃α.σ ∆, α :: type; Γ, x : σ ⊢ e′ : τ ′ ∆ ⊢ τ ′ : type
(α /∈ ∆, pure(e))

∆;Γ ⊢ let [α, x] = e in e′ : τ ′{e.α/α}

For example, if R is a variable containing the existential encoding of Rational, above, and we read R.x as
syntactic sugar for let [α,m] = R in m.x, we can now typecheck a term such as let c : R.t → R.t → R.t =
R.plus in c(R.zero)(R.zero), which has the type R.t.

One difficulty with allowing expressive module terms e is that it becomes hard to determine whether two
types e1.α and e2.α are in fact the same type. It is hard, of course, because determining equality of terms
in an expressive language is undecidable.

6 DeMorgan’s Laws

Constructively, ∃X.φ ⇒ ¬∀X.¬φ (but not conversely). This suggests that there should be a translation from
existentials to universals, which is in fact true. Weak existential types can be encoded using universal types
in System F, showing that there is an interesting duality between data abstraction and polymorphism.

References

[1] John E. Hopcroft and Richard M. Karp. A linear algorithm for testing equivalence of finite automata.
Technical Report 71-114, University of California, 1971.

[2] Robert Endre Tarjan. Efficiency of a good but not linear set union algorithm. J. ACM, 22(2):215–225,
1975.

4

