1 Denotational Semantics for FL

So far the most interesting thing we have given a denotational semantics for is the while loop. However, we now have enough machinery to capture higher-order constructs such as mutually recursive functions. We show how to give a semantics for a version of the FL language.

1.1 Syntax

We will work with a simplified version of FL similar to the λ-lifted version from Assignment 3 .

$$
\begin{aligned}
p::= & \text { letrec } d \text { in } e \\
d: & :=f\left(x_{1}, \ldots, x_{n}\right)=e \mid f\left(x_{1}, \ldots, x_{n}\right)=e \text { and } d \\
e::= & n|x| \text { let } x=e_{1} \text { in } e_{2}\left|f\left(e_{1}, \ldots, e_{n}\right)\right| \text { ifp } e_{0} \text { then } e_{1} \text { else } e_{2} \\
& \left|e_{1}+e_{2}\right| \ldots \text { (other arithmetic operators) }
\end{aligned}
$$

The syntactic constructs defined by d are mutually recursive function declarations. These occur at the outermost level only. The conditional test ifp-then-else expects a number instead of a Boolean for its first argument, and the test succeeds if that number is positive.

For example,

$$
\begin{aligned}
& \text { letrec } f_{1}(n, m)=\operatorname{ifp} m^{2}-n \text { then } 1 \text { else }(n \bmod m) \cdot f_{1}(n, m+1) \\
& \text { and } f_{2}(n)=\operatorname{ifp} f_{1}(n, 2) \text { then } n \text { else } f_{2}(n+1) \\
& \text { in } f_{2}(1000)
\end{aligned}
$$

In this program, $f_{2}(n)$ finds the first prime number $p \geq n$. The value of $n \bmod m$ is positive iff m does not divide n.

1.2 CBV Denotational Semantics for REC

We will interpret an expression e as a function is $\llbracket e \rrbracket \in F E n v \rightarrow E n v \rightarrow \mathbb{Z}_{\perp}$, where Env and FEnv denote the sets of variable environments and function environments, respectively.

$$
\rho \in \operatorname{Env}=\operatorname{Var} \rightarrow \mathbb{Z} \quad \varphi \in F E n v=\left(\mathbb{Z}^{n_{1}} \rightarrow \mathbb{Z}_{\perp}\right) \times \cdots \times\left(\mathbb{Z}^{n_{k}} \rightarrow \mathbb{Z}_{\perp}\right)
$$

Here Var and $F \operatorname{Var}$ are disjoint countable sets of variables, \mathbb{Z} is the set of integers, and $\mathbb{Z}^{n}=\underbrace{\mathbb{Z} \times \mathbb{Z} \times \cdots \times \mathbb{Z}}_{n \text { times }}$.

$$
\begin{aligned}
& \llbracket n \rrbracket \varphi \rho \triangleq n \\
& \llbracket x \rrbracket \varphi \rho \triangleq \rho(x) \\
& \llbracket e_{1}+e_{2} \rrbracket \varphi \rho \triangleq \llbracket e_{1} \rrbracket \varphi \rho+^{\dagger} \llbracket e_{2} \rrbracket \varphi \rho \quad \text { (similarly for other arithmetic operators) } \\
& \llbracket \text { let } x=e_{1} \text { in } e_{2} \rrbracket \varphi \rho \triangleq \text { let } v \in \mathbb{Z}=\llbracket e_{1} \rrbracket \varphi \rho \text { in } \\
& \llbracket e_{2} \rrbracket \varphi \rho[v / x] \\
& \llbracket \text { ifp } e_{0} \text { then } e_{1} \text { else } e_{2} \rrbracket \varphi \rho \triangleq \text { let } v_{0} \in \mathbb{Z}=\llbracket e_{0} \rrbracket \varphi \rho \text { in } \\
& \text { if } v_{0}>0 \text { then } \llbracket e_{1} \rrbracket \varphi \rho \text { else } \llbracket e_{2} \rrbracket \varphi \rho \\
& \llbracket f_{i}\left(e_{1}, \ldots, e_{n}\right) \rrbracket \varphi \rho \triangleq \text { let } v_{1} \in \mathbb{Z}=\llbracket e_{1} \rrbracket \varphi \rho \text { in } \\
& \vdots \\
& \text { let } v_{n} \in \mathbb{Z}=\llbracket e_{n} \rrbracket \varphi \rho \text { in } \\
& \left(\pi_{i} \varphi\right)\left(v_{1}, \ldots, v_{n}\right)
\end{aligned}
$$

In the definition of $\llbracket e_{1}+e_{2} \rrbracket \varphi \rho$, the symbol $+^{\dagger}$ refers to the lifted version of addition on \mathbb{Z}. This function takes the value \perp if either of its arguments is \perp, otherwise returns the sum of its arguments.

The meaning of a program letrec d in e is

$$
\llbracket \text { letrec } d \text { in } e \rrbracket \triangleq \llbracket e \rrbracket \varphi \rho_{0}
$$

where ρ_{0} is some initial environment containing default values for the variables (say 0), and if the function declarations d are

$$
f_{1}\left(x_{1}, \ldots, x_{n_{1}}\right)=e_{1} \text { and } \ldots \text { and } f_{k}\left(x_{1}, \ldots, x_{n_{k}}\right)=e_{k},
$$

then

$$
\begin{array}{r}
\varphi=\text { fix } \lambda \psi \in \text { FEnv. }\left(\lambda v_{1} \in \mathbb{Z}, \ldots, v_{n_{1}} \in \mathbb{Z} \cdot \llbracket e_{1} \rrbracket \psi \rho_{0}\left[v_{1} / x_{1}, \ldots, v_{n_{1}} / x_{n_{1}}\right],\right. \\
\vdots \\
\left.\lambda v_{1} \in \mathbb{Z}, \ldots, v_{n_{k}} \in \mathbb{Z} \cdot \llbracket e_{k} \rrbracket \psi \rho_{0}\left[v_{1} / x_{1}, \ldots, v_{n_{k}} / x_{n_{k}}\right]\right),
\end{array}
$$

or more accurately,

$$
\begin{aligned}
& \varphi=\text { fix } \lambda \psi \in \operatorname{FEnv} \cdot(\lambda v \in \mathbb{Z}^{n_{1}} \cdot \llbracket e_{1} \rrbracket \psi \rho_{0}\left[\pi_{1}(v) / x_{1}, \ldots, \pi_{n_{1}}(v) / x_{n_{1}}\right], \\
& \vdots \\
& \lambda v\left.\in \mathbb{Z}^{n_{k}} \cdot \llbracket e_{k} \rrbracket \psi \rho_{0}\left[\pi_{1}(v) / x_{1}, \ldots, \pi_{n_{k}}(v) / x_{n_{k}}\right]\right) .
\end{aligned}
$$

For this fixpoint to exist, we need to know that FEnv is a pointed CPO and that the function FEnv \rightarrow FEnv to which we are applying fix is continuous. The domain FEnv is a product, and a product is a pointed CPO when each factor is a pointed CPO. Each factor $\mathbb{Z}^{n_{i}} \rightarrow \mathbb{Z}_{\perp}$ is a pointed CPO, since a function is a pointed CPO when the codomain of that function is a pointed CPO , and \mathbb{Z}_{\perp} is a pointed CPO. Therefore, FEnv is a pointed CPO.

The function $\tau:$ FEnv \rightarrow FEnv to which we are applying fix is continuous, because it can be written using the metalanguage. Here is the argument. We illustrate with $k=2$ and $n_{1}=n_{2}=1$ for simplicity, thus we assume the declaration d is

$$
f_{1}(x)=e_{1} \text { and } f_{2}(x)=e_{2} .
$$

Then

$$
\varphi=\operatorname{fix} \lambda \psi \in F E n v \cdot\left(\lambda v \in \mathbb{Z} . \llbracket e_{1} \rrbracket \psi \rho_{0}[v / x], \lambda v \in \mathbb{Z} . \llbracket e_{2} \rrbracket \psi \rho_{0}[v / x \rrbracket)\right.
$$

This gives the least fixpoint of the operator

$$
\tau=\lambda \psi \in F E n v .\left(\lambda v \in \mathbb{Z} . \llbracket e_{1} \rrbracket \psi \rho_{0}[v / x], \lambda v \in \mathbb{Z} . \llbracket e_{2} \rrbracket \psi \rho_{0}[v / x\rfloor\right)
$$

provided we can show that τ is continuous. We can write

$$
\begin{aligned}
\tau & =\lambda \psi \in \text { FEnv. }\left(\lambda v \in \mathbb{Z} \cdot \llbracket e_{1} \rrbracket \psi \rho_{0}[v / x], \lambda v \in \mathbb{Z} \cdot \llbracket e_{2} \rrbracket \psi \rho_{0}[v / x]\right) \\
& =\lambda \psi \in \text { FEnv. }\left(\tau_{1}(\psi), \tau_{2}(\psi)\right) \\
& =\lambda \psi \in \text { FEnv. }\left\langle\tau_{1}, \tau_{2}\right\rangle(\psi) \\
& =\left\langle\tau_{1}, \tau_{2}\right\rangle
\end{aligned}
$$

where $\tau_{i}:$ FEnv \rightarrow FEnv is

$$
\tau_{i}=\lambda \psi \in F E n v . \lambda v \in \mathbb{Z} . \llbracket e_{i} \rrbracket \psi \rho_{0}[v / x]
$$

Because $\left\langle\tau_{1}, \tau_{2}\right\rangle$ is continuous iff τ_{1} and τ_{2} are, it suffices to show that each τ_{i} is continuous. Now we can write τ_{i} in our metalanguage.

$$
\begin{aligned}
\tau_{i} & =\lambda \psi \in F E n v \cdot \lambda v \in \mathbb{Z} \cdot \llbracket e_{i} \rrbracket \psi \rho_{0}[v / x] \\
& =\lambda \psi \in F E n v \cdot \lambda v \in \mathbb{Z} \cdot \llbracket e_{i} \rrbracket \psi\left(\text { subst } \rho_{0} x v\right) \\
& =\lambda \psi \in F E n v \cdot \lambda v \in \mathbb{Z} \cdot\left(\llbracket e_{i} \rrbracket \psi\right)\left(\left(\text { subst } \rho_{0} x\right) v\right) \\
& =\lambda \psi \in F E n v \cdot \lambda v \in \mathbb{Z} \cdot\left(\left(\llbracket e_{i} \rrbracket \psi\right) \circ\left(\text { subst } \rho_{0} x\right)\right) v \\
& =\lambda \psi \in F E n v \cdot\left(\left(\llbracket e_{i} \rrbracket \psi\right) \circ\left(\text { subst } \rho_{0} x\right)\right) \\
& =\lambda \psi \in \text { FEnv.compose }\left(\llbracket e_{i} \rrbracket \psi, \text { subst } \rho_{0} x\right) \\
& =\lambda \psi \in F E n v \cdot \operatorname{compose}\left(\llbracket e_{i} \rrbracket \psi, \text { const }\left(\text { subst } \rho_{0} x\right) \psi\right) \\
& =\lambda \psi \in \text { FEnv.compose }\left(\left\langle\llbracket e_{i} \rrbracket, \text { const }\left(\text { subst } \rho_{0} x\right)\right\rangle \psi\right) \\
& =\lambda \psi \in \text { FEnv. }\left(\text { compose } \circ\left\langle\llbracket e_{i} \rrbracket, \text { const }\left(\text { subst } \rho_{0} x\right)\right\rangle\right) \psi \\
& =\text { compose } \circ\left\langle\llbracket e_{i} \rrbracket, \text { const }\left(\text { subst } \rho_{0} x\right)\right\rangle .
\end{aligned}
$$

Now we can argue that τ_{i} is continuous. The composition of two continuous functions is continuous, so it suffices to know that compose and $\left\langle\llbracket e_{i} \rrbracket\right.$, const (subst $\left.\left.\rho_{0} x\right)\right\rangle$ are continuous. We argued last time that compose is continuous. To show $\left\langle\llbracket e_{i} \rrbracket\right.$, const $\left(\right.$ subst $\left.\left.\rho_{0} x\right)\right\rangle$ is continuous as a function, it suffices to show that both $\llbracket e_{i} \rrbracket$ and const (subst $\left.\rho_{0} x\right)$ are continuous as functions. The former is continuous by the induction hypothesis (structural induction on e). The latter is a constant function on a discrete domain and is therefore continuous.

1.3 CBN Denotational Semantics

The denotational semantics for CBN is the same as for CBV with two exceptions:

$$
\begin{aligned}
\llbracket \text { let } x=e_{1} \text { in } e_{2} \rrbracket \varphi \rho & \triangleq \llbracket e_{2} \rrbracket \varphi \rho\left[\llbracket e_{1} \rrbracket \varphi \rho / x\right] \\
\llbracket f_{i}\left(e_{1}, \ldots, e_{n}\right) \rrbracket \varphi \rho & \triangleq\left(\pi_{i} \varphi\right)\left(\llbracket e_{1} \rrbracket \varphi \rho, \ldots, \llbracket e_{n} \rrbracket \varphi \rho\right) .
\end{aligned}
$$

We must extend environments and function environments:

$$
\operatorname{Env}=\operatorname{Var} \rightarrow \mathbb{Z}_{\perp}
$$

$$
F E n v=\left(\mathbb{Z}_{\perp}^{n_{1}} \rightarrow \mathbb{Z}_{\perp}\right) \times \cdots \times\left(\mathbb{Z}_{\perp}^{n_{k}} \rightarrow \mathbb{Z}_{\perp}\right)
$$

