CS 6110 S16 Lecture 22 Denotational Semantics of FL 21 March 2016

1 Denotational Semantics for FL

So far the most interesting thing we have given a denotational semantics for is the while loop. However, we
now have enough machinery to capture higher-order constructs such as mutually recursive functions. We
show how to give a semantics for a version of the FL language.

1.1 Syntax

We will work with a simplified version of FL similar to the A-lifted version from Assignment 3.

p == letrecdine

d == f(z1,...,2zp)=¢ | f(x1,...,2,)=ceandd
n| x| letx=eines | fler,...,en) | ifpep then e else ey
| e14+ex | ... (other arithmetic operators)

The syntactic constructs defined by d are mutually recursive function declarations. These occur at the
outermost level only. The conditional test ifp-then-else expects a number instead of a Boolean for its first
argument, and the test succeeds if that number is positive.

For example,

letrec f1(n,m) = ifp m? —n then 1 else (n mod m) - f1(n,m + 1)
and fa(n) =ifp fi(n,2) then n else fo(n + 1)
in f2(1000)

In this program, f2(n) finds the first prime number p > n. The value of n mod m is positive iff m does not
divide n.

1.2 CBV Denotational Semantics for REC

We will interpret an expression e as a function is [e]] € FEnv — Env — Z, , where Env and FEnv denote
the sets of variable environments and function environments, respectively.

p € Env = Var - Z ¢ € FEnv = (Z™ — Z,) X - x (Z™ —7,)

Here Var and F'Var are disjoint countable sets of variables, 7 is the set of integers, and Z" = 7Z X 7Z X - - - X 7.
—_——

n times

1>

[nlep

>

[z]ep = p(x)

[er +e2]ep 2 [eilep + [e2]wp (similarly for other arithmetic operators)
[let z =e1 inex]p SletveZ= [er]pp in
[e2]¢plv/z]
[ifp e then ey else ex]wp 2 Jet vo € Z = [eg]pp in

if v > 0 then [e1]@p else [e2]vp

A .
[filer,...,en)]p =let v € Z = [e1]@p in

let vy, € Z = [en]pp in
(ﬂ-i L)‘J)(Ula"'avn)

In the definition of [e; + ez] ¢ p, the symbol +' refers to the lifted version of addition on Z. This function
takes the value L if either of its arguments is L, otherwise returns the sum of its arguments.

The meaning of a program letrec d in e is

[letrec d in €] 2 [e] ¥ po,

where pg is some initial environment containing default values for the variables (say 0), and if the function
declarations d are

filzi,...,xn,) =e1 and ... and fi(z1,...,%n,) = ek,
then

¢ = fix M) € FEnv.(Avy € Z, ..., v, € Z.[e1]¥polvi/T1, - Vny/Tnyl,

Ay €Zy. .. vn, €D [ex]Ypolvi/ai, ..., vn,/Tn,]),

or more accurately,

¢ = fix M) € FEnv. (M € Z™ . [e1] ¥ po[m1(v)/x1, ..., Tny (V) /T,],

Mo € T [ex] polms (v) /21, ., Ty (0) /s).

For this fixpoint to exist, we need to know that FEnv is a pointed CPO and that the function FEnv — FEnv
to which we are applying fix is continuous. The domain FEnv is a product, and a product is a pointed CPO
when each factor is a pointed CPO. Each factor Z™ — Z, is a pointed CPO, since a function is a pointed
CPO when the codomain of that function is a pointed CPO, and 7, is a pointed CPO. Therefore, FEnv is
a pointed CPO.

The function 7 : FEnv — FEnv to which we are applying fix is continuous, because it can be written using
the metalanguage. Here is the argument. We illustrate with ¥ = 2 and ny = ny = 1 for simplicity, thus we
assume the declaration d is

fl(,fl?) = €1 and fg(x) = €2.

Then
v = fix \p € FEnv. (M € Z. [er ¢ po[v/x], A € Z.[e2] ¢ po[v/x]).
This gives the least fixpoint of the operator
T = M) € FEnv. (M € Z.[e1 ¢ po[v/x], Av € Z. [ea]| ¢ po[v/x]),
provided we can show that 7 is continuous. We can write

7 = M € FEnv. (A € Z.[e1 ¢ polv/z], Av € Z. [e2]9 polv/x])

A € FEnv. (11(¢), 72(¢))
M) € FEnv. (11, 72) (¥)

<7—177—2>a

where 7; : FEnv — FEnv is
7, = Mp € FEnv. v € Z.[e; ¢ po[v/x].

Because (71, 72) is continuous iff 71 and 7o are, it suffices to show that each 7; is continuous. Now we can
write 7; in our metalanguage.

i = Mp € FEnv. € Z.[e; ¢ polv/x]

= M) € FEnv. v € Z. [e;][4 (subst pg z v)

= M) € FEnv. v € Z.([e;]¢) ((subst pp x) v)

= M) € FEnv. \w € Z. (([e;]¥) o (subst pg x)) v

= M € FEnv. (([e;]¢) o (subst pg))

= A\ € FEnv. compose ([e;]|, subst pg x)

= M\ € FEnv. compose ([e;], const (subst pg x) 1))

= My € FEnv. compose ({[e;], const (subst pg z)) 1)

= M\ € FEnv. (compose o ([e;], const (subst pg x))) ¥

= compose o ([e;], const (subst pg)).
Now we can argue that 7; is continuous. The composition of two continuous functions is continuous, so
it suffices to know that compose and ([e;], const (subst py x)) are continuous. We argued last time that
compose is continuous. To show ([e;], const (subst pg z)) is continuous as a function, it suffices to show
that both [e;] and const (subst pg x) are continuous as functions. The former is continuous by the induction

hypothesis (structural induction on e). The latter is a constant function on a discrete domain and is therefore
continuous.

1.3 CBN Denotational Semantics

The denotational semantics for CBN is the same as for CBV with two exceptions:

lletz = erinex]op 2 [ea]opller]op/al
[[fi(elw'wen)ﬂ@p é

We must extend environments and function environments:

(mip)([er]@p,---,[enlwp)-

Env = Var - 7Z, FEnv = (Z"" = 7Z.1) x---x (Z""* = Z.).

