
CS 6110 S16 Lecture 22 Denotational Semantics of FL 21 March 2016

1 Denotational Semantics for FL

So far the most interesting thing we have given a denotational semantics for is the while loop. However, we
now have enough machinery to capture higher-order constructs such as mutually recursive functions. We
show how to give a semantics for a version of the FL language.

1.1 Syntax

We will work with a simplified version of FL similar to the λ-lifted version from Assignment 3.

p ::= letrec d in e

d ::= f(x1, . . . , xn) = e | f(x1, . . . , xn) = e and d

e ::= n | x | let x = e1 in e2 | f(e1, . . . , en) | ifp e0 then e1 else e2

| e1 + e2 | . . . (other arithmetic operators)

The syntactic constructs defined by d are mutually recursive function declarations. These occur at the
outermost level only. The conditional test ifp-then-else expects a number instead of a Boolean for its first
argument, and the test succeeds if that number is positive.

For example,

letrec f1(n,m) = ifp m2 − n then 1 else (n mod m) · f1(n,m+ 1)

and f2(n) = ifp f1(n, 2) then n else f2(n+ 1)

in f2(1000)

In this program, f2(n) finds the first prime number p ≥ n. The value of n mod m is positive iff m does not
divide n.

1.2 CBV Denotational Semantics for REC

We will interpret an expression e as a function is JeK ∈ FEnv → Env → Z⊥, where Env and FEnv denote
the sets of variable environments and function environments, respectively.

ρ ∈ Env = Var → Z φ ∈ FEnv = (Zn1 → Z⊥)× · · · × (Znk → Z⊥)

Here Var and FVar are disjoint countable sets of variables, Z is the set of integers, and Zn = Z× Z× · · · × Z︸ ︷︷ ︸
n times

.

1

JnKφρ △
= n

JxKφρ △
= ρ(x)

Je1 + e2 Kφρ △
= Je1 Kφρ +† Je2 Kφρ (similarly for other arithmetic operators)

Jlet x = e1 in e2 Kφρ △
= let v ∈ Z = Je1 Kφρ inJe2 Kφρ[v/x]

Jifp e0 then e1 else e2 Kφρ △
= let v0 ∈ Z = Je0 Kφρ in

if v0 > 0 then Je1 Kφρ else Je2 Kφρ
Jfi(e1, . . . , en)Kφρ △

= let v1 ∈ Z = Je1 Kφρ in
...
let vn ∈ Z = Jen Kφρ in
(πi φ)(v1, . . . , vn)

In the definition of Je1 + e2 Kφρ, the symbol +† refers to the lifted version of addition on Z. This function
takes the value ⊥ if either of its arguments is ⊥, otherwise returns the sum of its arguments.

The meaning of a program letrec d in e is

Jletrec d in eK △
= JeKφρ0,

where ρ0 is some initial environment containing default values for the variables (say 0), and if the function
declarations d are

f1(x1, . . . , xn1) = e1 and . . . and fk(x1, . . . , xnk
) = ek,

then

φ = fix λψ ∈ FEnv . (λv1 ∈ Z, . . . , vn1 ∈ Z. Je1 Kψρ0[v1/x1, . . . , vn1/xn1],
...

λv1 ∈ Z, . . . , vnk
∈ Z. Jek Kψρ0[v1/x1, . . . , vnk

/xnk
]),

or more accurately,

φ = fix λψ ∈ FEnv . (λv ∈ Zn1 . Je1 Kψ ρ0[π1(v)/x1, . . . , πn1(v)/xn1],
...

λv ∈ Znk . Jek Kψ ρ0[π1(v)/x1, . . . , πnk
(v)/xnk

]).

For this fixpoint to exist, we need to know that FEnv is a pointed CPO and that the function FEnv → FEnv
to which we are applying fix is continuous. The domain FEnv is a product, and a product is a pointed CPO
when each factor is a pointed CPO. Each factor Zni → Z⊥ is a pointed CPO, since a function is a pointed
CPO when the codomain of that function is a pointed CPO, and Z⊥ is a pointed CPO. Therefore, FEnv is
a pointed CPO.

The function τ : FEnv → FEnv to which we are applying fix is continuous, because it can be written using
the metalanguage. Here is the argument. We illustrate with k = 2 and n1 = n2 = 1 for simplicity, thus we
assume the declaration d is

f1(x) = e1 and f2(x) = e2.

2

Then

φ = fix λψ ∈ FEnv . (λv ∈ Z. Je1 Kψρ0[v/x], λv ∈ Z. Je2 Kψρ0[v/x]).
This gives the least fixpoint of the operator

τ = λψ ∈ FEnv . (λv ∈ Z. Je1 Kψρ0[v/x], λv ∈ Z. Je2 Kψρ0[v/x]),
provided we can show that τ is continuous. We can write

τ = λψ ∈ FEnv . (λv ∈ Z. Je1 Kψρ0[v/x], λv ∈ Z. Je2 Kψρ0[v/x])
= λψ ∈ FEnv . (τ1(ψ), τ2(ψ))
= λψ ∈ FEnv . ⟨τ1, τ2⟩ (ψ)
= ⟨τ1, τ2⟩,

where τi : FEnv → FEnv is

τi = λψ ∈ FEnv . λv ∈ Z. Jei Kψρ0[v/x].
Because ⟨τ1, τ2⟩ is continuous iff τ1 and τ2 are, it suffices to show that each τi is continuous. Now we can
write τi in our metalanguage.

τi = λψ ∈ FEnv . λv ∈ Z. Jei Kψρ0[v/x]
= λψ ∈ FEnv . λv ∈ Z. Jei Kψ (subst ρ0 x v)
= λψ ∈ FEnv . λv ∈ Z. (Jei Kψ) ((subst ρ0 x) v)
= λψ ∈ FEnv . λv ∈ Z. ((Jei Kψ) ◦ (subst ρ0 x)) v
= λψ ∈ FEnv . ((Jei Kψ) ◦ (subst ρ0 x))
= λψ ∈ FEnv . compose (Jei Kψ, subst ρ0 x)
= λψ ∈ FEnv . compose (Jei Kψ, const (subst ρ0 x)ψ)
= λψ ∈ FEnv . compose (⟨Jei K, const (subst ρ0 x)⟩ψ)
= λψ ∈ FEnv . (compose ◦ ⟨Jei K, const (subst ρ0 x)⟩)ψ
= compose ◦ ⟨Jei K, const (subst ρ0 x)⟩.

Now we can argue that τi is continuous. The composition of two continuous functions is continuous, so
it suffices to know that compose and ⟨Jei K, const (subst ρ0 x)⟩ are continuous. We argued last time that
compose is continuous. To show ⟨Jei K, const (subst ρ0 x)⟩ is continuous as a function, it suffices to show
that both Jei K and const (subst ρ0 x) are continuous as functions. The former is continuous by the induction
hypothesis (structural induction on e). The latter is a constant function on a discrete domain and is therefore
continuous.

1.3 CBN Denotational Semantics

The denotational semantics for CBN is the same as for CBV with two exceptions:

Jlet x = e1 in e2 Kφρ △
= Je2 Kφρ[Je1 Kφρ/x]Jfi(e1, . . . , en)Kφρ △
= (πi φ)(Je1 Kφρ, . . . , Jen Kφρ).

We must extend environments and function environments:

Env = Var → Z⊥ FEnv = (Zn1

⊥ → Z⊥)× · · · × (Znk

⊥ → Z⊥).

3

