
CS 6110 S16 Lecture 17 Dynamic Logic and Kleene Algebra 9 March 2016

Hoare logic was a relatively early development. In this lecture we survey some more recent developments in
this area:

• Kleene algebra (KA) and Kleene algebra with tests (KAT)

• Dynamic logic (DL)

1 Kleene Algebra (KA)

Kleene algebra (KA) is an algebraic system that captures axiomatically the properties of several natural
classes of structures that arise in logic and computer science. It is named for Stephen Cole Kleene (1909–
1994), who among his many other achievements invented finite automata and regular expressions, structures
of fundamental importance in computer science. Kleene algebra is the algebraic theory of these objects,
although it has many other natural and useful interpretations. Kleene algebras arise in various guises in
many contexts: relational algebra, semantics and logics of programs, automata and formal language theory,
and the design and analysis of algorithms.

Formally, a Kleene algebra is an algebraic structure (K,+, ·,∗ , 0, 1) consisting of a set K with binary oper-
ations + (choice) and · (sequential composition), unary operation ∗ (iteration), and constants 1 (skip) and
0 (fail) satisfying the axioms listed below. We usually omit the operator ·, writing pq for p · q. The order of
precedence of the operators is ∗ > · > +; thus p+ qr∗ should be parsed as p+ (q(r∗)).

The axioms of KA are

p+ (q + r) = (p+ q) + r p(qr) = (pq)r
p+ q = q + p 1p = p
p+ 0 = p p1 = p
p+ p = p

p(q + r) = pq + pr 0p = 0
(p+ q)r = pr + qr p0 = 0

1 + pp∗ = p∗ q + pr ≤ r ⇒ p∗q ≤ r
1 + p∗p = p∗ q + rp ≤ r ⇒ qp∗ ≤ r

where ≤ refers to the natural partial order on K:

p ≤ q
△⇐⇒ p+ q = q.

Instead of the last two equational implications, we might take the equivalent axioms

pr ≤ r ⇒ p∗r ≤ r rp ≤ r ⇒ rp∗ ≤ r.

The axioms not involving ∗, taken together, say that the structure (K,+, ·, 0, 1) is an idempotent semiring.
The term idempotent refers to the axiom p + p = p. The remaining axioms involving ∗ say essentially
that ∗ behaves like the Kleene asterate operator of formal language theory or the reflexive transitive closure
operator of binary relations.

The standard model is the family of regular sets over a finite alphabet Σ. The elements are the regular
subsets of Σ∗, the set of finite-length strings over a finite alphabet Σ, including the null string ε. The
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operations are

A+B
△
= A ∪B 0

△
= ∅

A ·B △
= {xy | x ∈ A, y ∈ B} 1

△
= {ε}

A∗ △
=

∪
n≥0

An = {x1 · · ·xn | n ≥ 0 and xi ∈ A, 1 ≤ i ≤ n},

where A0 △
= {ε} and An+1 △

= AAn. The operation ∗ is known as Kleene asterate.

Another model is the family of binary relations on a set X, that is, subsets of X ×X, with operations

R+ S
△
= R ∪ S 0

△
= ∅

R · S △
= S ◦R = {(u,w) | ∃v (u, v) ∈ R ∧ (v, w) ∈ S} 1

△
= {(u, u) | u ∈ X}

R∗ △
=

∪
n≥0

Rn = reflexive transitive closure of R,

where R0 △
= {(u, u) | u ∈ X} and Rn+1 △

= R ◦Rn.

One can show that the family of n × n matrices over a Kleene algebra is a Kleene algebra. Other more
unusual interpretations include the (min,+) algebra used in shortest path algorithms and models consisting
of convex polyhedra used in computational geometry.

The following are some typical consequences of the axioms:

(p∗q)∗p∗ = (p+ q)∗ p(qp)∗ = (pq)∗p (pq)∗ = 1 + p(qp)∗q p∗ = (pp)∗(1 + p).

The axioms are complete for the equational theory of the regular set model. That is, all true identities between
regular expressions, interpreted as regular sets of strings, are provable. The axioms are also complete for the
equational theory of relational models, which are useful in programming language semantics.

2 Kleene Algebra with Tests (KAT)

A Kleene algebra with tests (KAT) is just a Kleene algebra with an embedded Boolean subalgebra. That is,
it is a two-sorted structure (K,B,+, ·,∗ , , 0, 1) such that

• (K,+, ·,∗ , 0, 1) is a Kleene algebra,

• (B,+, ·, , 0, 1) is a Boolean algebra, and

• (B,+, ·, 0, 1) is a subalgebra of (K,+, ·, 0, 1).

The Boolean complementation operator is defined only on B. Elements of B are called tests. The letters
p, q, r, s denote arbitrary elements of K and a, b, c denote tests.

This deceptively simple definition actually carries a lot of information in a concise package. The operators
+, ·, 0, 1 each play two roles: applied to arbitrary elements of K, they refer to nondeterministic choice, com-
position, fail, and skip, respectively; and applied to tests, they take on the additional meaning of Boolean
disjunction, conjunction, falsity, and truth, respectively. These two usages do not conflict—for example, se-
quential testing of b and c is the same as testing their conjunction—and their coexistence admits considerable
economy of expression.
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The programming constructs of the IMP language are encoded as follows:

p ; q
△
= pq if b then p else q

△
= bp+ bq while b do p

△
= (bp)∗b.

For applications in program verification, the standard interpretation would be a Kleene algebra of binary
relations on a set and the Boolean algebra of subsets of the identity relation. There are also trace models, in
which the Kleene elements are sets of traces (sequences of states) and the Boolean elements are sets of states
(traces of length 0). As with KA, one can form the algebra of n×n matrices over a KAT (K,B); the Boolean
elements of this structure are the diagonal matrices over B. There is also a language-theoretic model that
plays the same role in KAT that the regular sets of strings over a finite alphabet play in KA, namely the
family of regular sets of guarded strings over a finite alphabet Σ with guards from a set B. The equational
theory of this structure is exactly the set of all equational consequences of the KAT axioms. Moreover, KAT
is complete for the equational theory of relational models.

2.1 Encoding Hoare Logic

As we have seen, Hoare logic uses a specialized syntax involving partial correctness assertions (PCAs) of the
form {b}p{c} and a deductive apparatus consisting of a system of specialized rules of inference. The PCA
{b}p{c} is encoded in KAT in any one of the following three equivalent ways:

bp ≤ pc bp = bpc bpc = 0.

Intuitively, the last of these says that the program p with preguard b and postguard c has no halting execution,
and the second says that the test c after executing p with preguard b is always redundant.

Hoare-style inference rules of the form

{b1}p1 {c1}, . . . , {bn}pn {cn}
{b}p{c}

(1)

become equational implications (universal Horn formulas)

b1p1 ≤ p1c1 ∧ . . . ∧ bnpn ≤ pncn ⇒ bp ≤ pc

in KAT. The variables are implicitly universally quantified. The Hoare rules (see Lecture 17) then take the
following form:

bp ≤ pc ∧ cq ≤ qd ⇒ bpq ≤ pqd (sequential composition)

bcp ≤ pd ∧ bcq ≤ qd ⇒ c(bp+ bq) ≤ (bp+ bq)d (conditional)

bcp ≤ pc ⇒ c(bp)∗b ≤ (bp)∗b bc (while)
b′ ≤ b ∧ bp ≤ pc ∧ c ≤ c′ ⇒ b′p ≤ pc′ (weakening)

Theorem The KAT encodings of the Hoare rules above are all theorems of KAT.

Proof sketch. We just do the while rule. By trivial simplifications it suffices to show cbp ≤ bpc ⇒ c(bp)∗ ≤
(bp)∗c. Taking q = bp, it suffices to show cq ≤ qc ⇒ cq∗ ≤ q∗c. Assume cq ≤ qc. By the axiom
c+ xq ≤ x⇒ cq∗ ≤ x of Kleene algebra, we need only show c+ q∗cq ≤ q∗c. But

c+ q∗cq ≤ c+ q∗qc by the assumption cq ≤ qc and monotonicity
≤ (1 + q∗q)c by distributivity
≤ q∗c by the axiom 1 + q∗q = q∗.

3



2
More importantly,

Theorem 1. KAT is complete for all relationally valid Hoare rules of the form (1); that is, all such rules
that are true in all relational interpretations are theorems of KAT.

This is trivially false for Hoare logic. For example, the rule

{b} if d then p else p{c}
{b}p{c}

is relationally valid, but not provable in Hoare logic for the simple reason that all the Hoare rules go from
shorter programs above the line to longer programs below the line. However, its translation

b(dp+ dp) ≤ (dp+ dp)c ⇒ bp ≤ pc

is easily provable in KAT.

3 Dynamic Logic (DL)

Dynamic logic (DL) is a logic of programs based on modal logic, the logic of possibility and necessity. Modal
logic has formulas 3φ, read “φ is possible” or just “diamond φ,” and 2φ, read “φ is necessary” or just “box
φ.” These operators are dual to each other in the sense that 3φ ⇔ ¬2¬φ; intuitively, φ is possibly true if
and only if it is not necessarily false.

In DL, there is a separate modality for each program p, and we can write [p]φ or <p>φ. In propositional
dynamic logic (PDL), programs are usually taken to be regular programs formed with the regular expression
operators as in Kleene algebra. There is also a test operator ? that turns a proposition into a program.

Programs are interpreted as binary relations on a set of states, and propositions are interpreted as sets of
states. The formula [p]φ is semantically equivalent to the weakest liberal precondition wlp p φ. Thus the
Hoare partial correctness assertion {φ}p{ψ} is equivalent to φ⇒ [p]ψ.

The axioms and rules of inference of PDL are

1. axioms for propositional logic

2. [p](φ⇒ ψ) ⇒ ([p]φ⇒ [p]ψ)

3. [p](φ ∧ ψ) ⇔ [p]φ ∧ [p]ψ

4. [p+ q]φ ⇔ [p]φ ∧ [q]φ

5. [p ; q]φ ⇔ [p][q]φ

6. [ψ?]φ ⇔ (ψ ⇒ φ)

7. φ ∧ [p][p∗]φ ⇔ [p∗]φ

8. φ ∧ [p∗](φ⇒ [p]φ) ⇒ [p∗]φ (induction axiom)

9.
φ φ⇒ ψ

ψ
(modus ponens)
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10.
φ

[p]φ
(modal generalization)

Axioms 1–3 and the rules of inference 9 and 10 are not particular to PDL, but come from modal logic.

Axiom 8 is called the PDL induction axiom. Intuitively, it says: “Suppose φ is true in the current state, and
suppose that after any number of iterations of p, if φ is still true, then it will be true after one more iteration
of p. Then φ will be true after any number of iterations of p.” In other words, if φ is true initially, and if
the truth of φ is preserved by the program p, then φ will be true after any number of iterations of p.

The axioms are complete over all relational interpretations.
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