
CS 6110 S16 Lecture 10 Adequacy 22 February 2016

Both the CBV and CBN λ-calculus are deterministic reduction strategies in the sense that there is at most
one reduction that is enabled in any term. When an expression e in a language is evaluated in a deterministic
system, one of three things can happen:

1. There exists an infinite sequence of expressions e1, e2, . . . such that e
1−→ e1

1−→ e2
1−→ In this case,

we write e ⇑ and say that e diverges.

2. The expression e produces a value v in zero or more steps. In this case we say that e converges to the
value v and write e ⇓ v.

3. The computation converges to a non-value. When this happens, we say the computation is stuck.1

A semantic translation is adequate if these three behaviors in the source system are accurately reflected in
the target system, and vice versa. This relationship is illustrated in the following diagram:

e v

Je K v′ ≈ Jv K

∗

J· K
∗

J· K

If e converges to a value v in the source language, then JeK must converge to some value v′ that is equivalent
(e.g. β-equivalent) to Jv K in the target language, and vice-versa. This is formally stated as two properties,
soundness and completeness. For our CBN-to-CBV translation, these properties take the following form:

Soundness:

(i) JeK ⇓cbv t ⇒ ∃v t ≈ Jv K ∧ e ⇓cbn v

(ii) JeK ⇑cbv ⇒ e ⇑cbn

Completeness:

(i) e ⇓cbn v ⇒ ∃t t ≈ Jv K ∧ JeK ⇓cbv t

(ii) e ⇑cbn ⇒ JeK ⇑cbv.

where ≈ is some notion of target term equivalence that is preserved by evaluation.

Soundness says that the computation in the CBV domain starting from the image JeK of a CBN program
e accurately simulates the computation starting from e in the CBN domain. Thus if the CBV process
terminates in a value, then so must the CBN process, and the values must be related in the sense described
formally above; and if the CBV computation diverges, then so does the CBN computation. Completeness
says the opposite: the computation in the CBN domain starting from e is accurately simulated by the
computation in the CBV domain starting from JeK.
Adequacy is the combination of soundness and completeness.

1This cannot happen with our CBN-to-CBV translation, but we will see some examples soon enough.

1

1 Proving Adequacy

We would like to show that evaluation commutes with our translation J·K from CBN to CBV. To do this,
we first need a notion of target term equivalence (≈) that is preserved by evaluation. This is made more
challenging because as evaluation takes place in the target language, intermediate terms are generated that
are not the translation of any source term. For some translations (but not this one), the reverse may also
happen. Therefore, equivalence needs to allow for some extra β-redexes that appear during translation. We
can define this equivalence by structural induction on CBV target terms according to the following rules:

x ≈ x t ≈ t′

λx. t ≈ λx. t′
t0 ≈ t′0 t1 ≈ t′1

t0 t1 ≈ t′0 t
′
1

t ≈ (λz. t) id, where z ̸∈ FV(t)

Here, t represents target terms, to keep them distinct from source terms e. We also include rules so that the
relation ≈ is reflexive, symmetric, and transitive. One can show easily that if two terms are equivalent with
respect to this relation, then they have the same β-normal form.

To show adequacy, we show that each evaluation step in the source term is mirrored by a sequence of
evaluation steps in the corresponding target term, and vice versa. So we define a correspondence > between
source and target terms that is more general than the translation J·K and is preserved during evaluation of
both source and target.

We write e > t to mean that CBN term e corresponds to CBV term t. The following proposition captures
the idea that CBV evaluation simulates CBN evaluation at the level of individual steps:

e > t ∧ e → e′ ⇒ ∃t′ t ∗−→ t′ ∧ e′ > t′ (1)

This can be visualized as a commutative diagram:

e e′

t t′ (≈ Je′ K)

1

>
∗

>

In fact, since in this case the source language cannot get stuck during evaluation, and both languages have
deterministic evaluation, (1) ensures that evaluation in each language corresponds to the other.

We define the relation > in such a way that e > JeK. Then, using (1), we can show that any trace in the
source language produces a corresponding trace in the target by induction on the number of source-language
steps.

We define the relation > by the following rules:

x > x id
e > t

λx. e > λx. t

e0 > t0 e1 > t1
e0 e1 > t0 (λ . t1)

e > t

e > (λ . t) id
(2)

For simplicity, we ignore the fresh variable that would be used in the new lambda abstraction in the last two
rules.

The first three rules of (2) ensure that a source term corresponds to its translation. The last rule is different;
it takes care of the extra β-reductions that may arise during evaluation. Because the right-hand side of the >

2

relation becomes structurally smaller in this rule’s premise, the definition of the relation is still well-founded.
The first three rules are well-founded based on the structure of e; the last is well-founded based on the
structure of t. If we were proving a more complex translation correct, we would need more rules like the last
rule for other meaning-preserving target-language reductions.

First, let us warm up by showing that a term corresponds to its translation.

Lemma 1. e > JeK.
Proof. An easy structural induction on e.

• Case x: x > x id by definition.

• Case λx. e′: We have JeK = λx. Je′ K. By the induction hypothesis, e′ > Je′ K, so λx. e′ > λx. Je′ K by
the second rule of (2).

• Case e0 e1: We have JeK = Je0 K (λ . Je1 K). By the induction hypothesis, e0 > Je0 K and e1 > Je1 K.
Therefore by the third rule of (2), e0 e1 > Je0 K Je1 K.

Next, let us show that if e corresponds to t, its translation is equivalent to t.

Lemma 2. e > t ⇒ JeK ≈ t.

Proof. Induction on the derivation of e > t.

• Case x > x id:
This case is trivial: JxK = x id.

• Case λx. e′ > λx. t′ where e′ > t′:
Here, JeK = λx. Je′ K. By the induction hypothesis, Je′ K ≈ t′, therefore λx. Je′ K ≈ λx. t′ as required.

• Case e0 e1 > t0 (λ . t1) where e0 > t0 and e1 > t1:
Here, Je0 e1 K = Je0 K(λ . Je1 K), and by the induction hypothesis, Je0 K ≈ t0 and Je1 K ≈ t1. From the
definition of ≈, we have Je0 K(λ . Je1 K) ≈ t0 (λ . t1).

• Case e > (λ . t) id where e > t:
The induction hypothesis is JeK ≈ t. But t ≈ (λ . t) id, and ≈ is transitive.

Given these definitions, we can prove (1) by induction on the derivation of e > t. We will need two useful
lemmas. The first is a substitution lemma that says substituting corresponding terms into corresponding
terms produces corresponding terms:

Lemma 3. e1 > t1 ∧ e2 > t2 ⇒ e2{e1/x} > t2 {λ. t1/x}.

Proof. We proceed by induction on the derivation of e2 > t2.

• Case x > x id:
We have e2 {e1/x} = e1 and t2 {λ. t1/x} = (λ. t1) id. By the fourth rule of (2), we have e1 > (λ. t1) id.

3

• Case y > y id where y ̸= x:
This case is trivial, as the substitution has no effect.

• Case λx. e > λx. t where e > t:
Again, this case is trivial, as the substitutions into e2 and t2 have no effect.

• Case λy. e > λy. t where e > t, x ̸= y:
Here e2 {e1/x} = λy. e{e1/x} and t2 {λ. t1/x} = λy. t{λ. t1/x}. Since e > t, by the induction hy-
pothesis we have e{e1/x} > t{λ. t1/x}. Therefore by definition, λy. e{e1/x} > λy. t{λ. t1/x}, as
required.

• Case e e′ > t (λ. t′), where e > t and e′ > t′:
We have e2 {e1/x} = e{e1/x} e′{e1/x}, and t2 {λ. t1/x} = t{λ. t1/x} (λ. t′{t1/x}). From the induc-
tion hypothesis, e{e1/x} > t{λ. t1/x} and e′{e1/x} > t′{λ. t1/x}. Therefore, by definition we have
e{e1/x} e′{e1/x} > t{λ. t1/x} (λ. t′ {t1/x}).

• Case e2 > (λ . t′2) id, where e2 > t′2:
We need to show that e2 {e1/x} > ((λ . t′2) id){λ . t1/x}; that is, e2 {e1/x} > ((λ . t′2 {λ . t1/x}) id).
From the induction hypothesis, we have e2{e1/x} > t′2{λ. t1/x}. By definition, this means e2 {e1/x} >
(λ . t′2{λ. t1/x}) id.

The next lemma says that if a value λx. e corresponds to a term t, then t reduces to a corresponding λ-term
λ . t′.

Lemma 4. λx. e > t ⇒ ∃t′ t → λx. t′ ∧ e > t′.

Proof. By induction on the derivation of λx. e > t.

• Case y > y id: Impossible, as y ̸= λx. e.

• Case λx. e > λx. t′ where e > t′:
Here, t = λx. t′, and the result is immediate.

• Case e0 e1 > t0 (λ. t1): Impossible, as e0 e1 ̸= λx. e.

• Case e0 > (λ. t0) id, where e0 > t0:
In this case e0 = λx. e, and t = ((λ. t0) id). By the induction hypothesis, there is some t′ such that
t0 → λx. t′ and e > t′. Since t = ((λ. t0) id) 1−→ t0 we have t → λx. t′, as required.

We are now ready to prove (1).

Proof. By induction on the derivation of e > t:

• Case x > x id: Vacuously true, as there is no evaluation step e
1−→ e′.

• Case λx. e > λx. t: A value: also vacuously true.

• Case e0 e1 > t0 (λ. t1), where e0 > t0 and e1 > t1:
We show this by cases on the derivation of e 1−→ e′:

4

– Case e0 e1
1−→ e′0 e1, where e0

1−→ e′0:
By the induction hypothesis, ∃t′0 e′0 > t′0 ∧ t0 → t′0. It is easy to see that t0 (λ. t1) → t′0 (λ. t1).
By the third rule of (2), e′0 e1 > t′0 (λ. t1), as required.

– Case (λx. e2) e1
1−→ e2{e1/x}:

Here λx. e2 > t0 and e1 > t1.
By Lemma 4, there exists a t2 such that t0 → λx. t2 and e2 > t2. Therefore, we have t0 (λ . t1) →
(λx. t2) (λ . t1)

1−→ t2{λ. t1/x}. But from the substitution lemma above (Lemma 3), we know that
e2 {e1/x} > t2{λ. t1/x}, as required.

• Case e0 > (λ. t0) id, where e0 > t0:
By the induction hypothesis, ∃t′0 e0 > t′0 ∧ t0 → t′0. It is easy to see that therefore ((λ. t0) id) 1−→ t0 →
t′0, as required.

Having proved (1), we can show completeness of the translation. If we start with a source term e and its
translation JeK, we know from Lemma 1 that e > JeK. From (1), we know that each step of evaluation
of e is mirrored by execution on the target side that preserves e > t. If the evaluation of e diverges, so
will the evaluation of JeK. If the evaluation of e converges on a value v, then the evaluation of JeK will
reach a convergent (by Lemma 4) term t such that v > t. And by Lemma 2, Jv K ≈ t. This demonstrates
completeness.

To show soundness of the translation, we need to show that every evaluation in the target language corre-
sponds to some evaluation in the source language. Suppose we have a target-language evaluation t → v′,
where t = JeK, but there is no corresponding source-language evaluation of e. There are three possibilities.
First, the evaluation of e could get stuck. This cannot happen for this source language because all terms are
either values or have a legal evaluation. Second, the evaluation of e could evaluate to a value v. But then
v must correspond to v′, because the target-language evaluation is deterministic. Third, the evaluation of e
might diverge. But then (1) says there is a divergent target-language evaluation. The determinism of the
target language ensures that cannot happen.

5

