
CS 6110 S16 Lecture 7 Inductive Definitions and Least Fixpoints 12 February 2016

1 Set Operators

Last time we considered a set of rule instances of the form

X1 X2 . . . Xn

X
, (1)

where X and the Xi are members of some set S. From this we defined a set operator

R(B)
△
= {X | {X1, X2, . . . , Xn} ⊆ B and

X1 X2 . . . Xn

X
is a rule instance}. (2)

An important property of set operators defined by rules of this form is monotonicity. A set operator R is
monotone if B ⊆ C implies R(B) ⊆ R(C). We listed two desirable properties of the set A ⊆ S defined by
R, namely:

• A should be R-closed : R(A) ⊆ A. We would like this to hold because we would like every element that
the rules say should be in A to actually be in A.

• A should be R-consistent : A ⊆ R(A). We would like this to hold because we would like every element
of A to be included in A only as a result of applying a rule.

These two properties together say that A = R(A), or in other words, A should be a fixpoint of R. We then
asked two natural questions:

• Does R actually have a fixpoint?

• Is the fixpoint unique? If not, which one should we take?

2 Least Fixpoints

In fact, any monotone set operator R always has at least one fixpoint. It may have many, but among all its
fixpoints, it has a unique minimal one with respect to set inclusion ⊆; that is, a fixpoint that is a subset of
all other fixpoints of R. We call this the least fixpoint of R. It also has a greatest fixpoint, which is a fixpoint
that is a superset of all other fixpoints of R.

The least fixpoint of R can be defined in two different ways, “from below” and “from above”. For the
rule-based operators we have been studying, these constructions take the following form:

A∗
△
=

∪
{Rn(∅) | n ≥ 0} = R(∅) ∪R(R(∅)) ∪R(R(R(∅))) ∪ · · · (3)

A∗ △
=

∩
{B ⊆ S | R(B) ⊆ B}. (4)

The set A∗ is the union of all sets of the form Rn(∅), the sets obtained by applying R some finite number
of times to the empty set. The set A∗ is the intersection of all the R-closed subsets of S. We will show that
A∗ = A∗ and that this set is the least fixpoint of R.

1



3 The Knaster–Tarski Theorem

The fact that A∗ = A∗ is a special case of a more general theorem called the Knaster–Tarski theorem. It
states that any monotone set operator R has a unique least fixpoint, and that this fixpoint can be obtained
either “from below” by iteratively applying R to the empty set, or “from above” by taking the intersection
of all R-closed sets.

For general monotone operators R, the “from below” construction may require iteration through transfinite
ordinals. However, the operators R defined from rule systems as described above are chain-continuous
(definition below). This is a stronger property than monotonicity. It guarantees that the “from below”
construction converges to a fixpoint after only ω steps, where ω is the first transfinite ordinal.

3.1 Monotone, Continuous, and Finitary Operators

If C is a set of subsets of S, denote by
∪
C the union of all elements of C; that is, x ∈

∪
C iff there exists

A ∈ C such that x ∈ A. The set
∪
C is the smallest subset of S containing all A ∈ C as subsets. A chain is a

set C of subsets of S that is linearly ordered by the set inclusion relation ⊆; that is, for all B,C ∈ C, either
B ⊆ C or C ⊆ B.

A set operator R : 2S → 2S is said to be

• monotone if B ⊆ C implies R(B) ⊆ R(C);

• (chain-)continuous if for any chain of sets C,

R(
∪

C) =
∪

{R(B) | B ∈ C};

• finitary if for any set C, the value of R(C) is determined by the values of R(B) for finite subsets B ⊆ C
in the following sense:

R(C) =
∪

{R(B) | B ⊆ C, B finite}.

One can show

1. every rule-based operator of the form (2) is finitary;

2. every finitary operator is chain-continuous (in fact, the converse holds as well);

3. every chain-continuous operator is monotone.

The proofs of 1, 2, and 3 are fairly straightforward and we will leave them as exercises. The converse of 2
requires transfinite induction and is more difficult.

3.2 Proof of the Knaster–Tarski Theorem for Chain-Continuous Operators

Let us prove the Knaster–Tarski theorem in the special case of chain-continuous operators, which will allow
us to avoid introducing transfinite ordinals (not that they are not worth introducing!), and that is all we
need to handle rule-based inductive definitions.

Theorem (Knaster–Tarski) Let R : 2S → 2S be a chain-continuous set operator, and let A∗ and A∗ be
defined as in (3) and (4), respectively. Then A∗ = A∗, and this set is the ⊆-least fixpoint of R.

2



Proof. The theorem follows from two observations:

(i) For every n and every R-closed set B, Rn(∅) ⊆ B. This can be proved by induction on n. It follows
that A∗ ⊆ A∗.

(ii) A∗ is R-closed. Since A∗ is contained in all R-closed sets, A∗ ⊆ A∗.

For (i), let B be an R-closed set. We proceed by induction on n. The basis for n = 0 is ∅ ⊆ B, which is
trivially true. Now suppose Rn(∅) ⊆ B. We have

Rn+1(∅) = R(Rn(∅))

⊆ R(B) by the induction hypothesis and monotonicity
⊆ B since B is R-closed.

We conclude that for all n and all R-closed sets B, Rn(∅) ⊆ B, therefore

A∗ =
∪

{Rn(∅) | n ≥ 0} ⊆
∩

{B ⊆ S | R(B) ⊆ B} = A∗.

For (ii), we want to show that R(A∗) ⊆ A∗. It can be proved by induction on n that the sets Rn(∅) form a
chain:

∅ ⊆ R(∅) ⊆ R2(∅) ⊆ R3(∅) ⊆ · · ·

We have ∅ ⊆ R(∅) trivially, and by monotonicity, if Rn(∅) ⊆ Rn+1(∅), then

Rn+1(∅) = R(Rn(∅)) ⊆ R(Rn+1(∅)) = Rn+2(∅).

Now by chain-continuity,

R(A∗) = R(
∪
n≥0

Rn(∅)) =
∪
n≥0

R(Rn(∅)) =
∪
n≥0

Rn+1(∅) = A∗.

4 Rule Induction

Let us use our newfound wisdom on well-founded induction and least fixpoints of monotone maps to prove
some properties of the reduction rules.

4.1 Example: CBV Preserves Closedness

Theorem 1. If e → e′ under the CBV reduction rules, then FV(e′) ⊆ FV(e). In other words, CBV
reductions cannot introduce any new free variables.

Proof. By induction on the CBV derivation of e → e′. There is one case for each CBV rule, corresponding
to each way e → e′ could be derived.

3



Case 1
e1 → e′1

e1 e2 → e′1 e2
.

We assume that the desired property is true of the premise—this is the induction hypothesis—and we wish to
prove under this assumption that it is true for the conclusion. Thus we are assuming that FV(e′1) ⊆ FV(e1)
and wish to prove that FV(e′1 e2) ⊆ FV(e1 e2).

FV(e′1 e2) = FV(e′1) ∪ FV(e2) by the definition of FV
⊆ FV(e1) ∪ FV(e2) by the induction hypothesis
= FV(e1 e2) again by the definition of FV.

Case 2
e2 → e′2

v e2 → v e′2
.

This case is similar to Case 1, where now e2 → e′2 is used in the induction hypothesis.

Case 3
(λx. e) v → e{v/x}

.

There is no induction hypothesis for this case, since there is no premise in the rule; thus this case constitutes
the basis of our induction. We wish to show, independently of any inductive assumption, that FV(e{v/x}) ⊆
FV((λx. e) v).

This case requires a lemma, stated below, to show that FV(e{v/x}) ⊆ (FV(e)−{x})∪FV(v). Once that is
shown, we have

FV(e{v/x}) ⊆ (FV(e)− {x}) ∪ FV(v) by the lemma to be proved
= FV(λx. e) ∪ FV(v) definition of FV
= FV((λx. e) v) definition of FV.

We have now considered all three rules of derivation for the CBV λ-calculus, so the theorem is proved.

The following lemma is used in Case 3 of Theorem 1 above.

Lemma 2. FV(e{v/x}) ⊆ (FV(e)− {x}) ∪ FV(v).

Proof. By structural induction on e. There is one case for each clause in the definition of the substitution
operator. We have assumed previously that values are closed terms, so FV(v) = ∅ for any value v; but
actually we do not need this for the proof, and we do not assume it.

Case 1 e = x.

FV(x{v/x}) = FV(v) definition of substitution
= ({x} − {x}) ∪ FV(v)

= (FV(x)− {x}) ∪ FV(v) definition of FV.

4



Case 2 e = y, y ̸= x.

FV(y{v/x}) = FV(y) definition of substitution
= {y} definition of FV
⊆ ({y} − {x}) ∪ FV(v)

= (FV(y)− {x}) ∪ FV(v) definition of FV.

Case 3 e = e1 e2.

FV((e1 e2){v/x}) = FV(e1 {v/x} e2 {v/x}) definition of substitution
⊆ (FV(e1)− {x}) ∪ FV(v) ∪ (FV(e2)− {x}) ∪ FV(v) induction hypothesis
= ((FV(e1) ∪ FV(e2))− {x}) ∪ FV(v)

= (FV(e1 e2)− {x}) ∪ FV(v) definition of FV.

Case 4 e = λx. e′.

FV((λx. e′){v/x}) = FV(λx. e′) definition of substitution
= FV(λx. e′)− {x} because x ̸∈ FV(λx. e′)

⊆ (FV(λx. e′)− {x}) ∪ FV(v).

Case 5 e = λy. e′, y ̸= x. This is the most interesting case, because it involves a change of bound variable.
Using the fact FV(v) = ∅ for values v would give a slightly simpler proof. Let v be a value and z a variable
such that z ̸= x, z ̸∈ FV(e′), and z ̸∈ FV(v).

FV((λy. e′){v/x}) = FV(λz. e′{z/y}{v/x}) definition of substitution
= FV(e′{z/y}{v/x})− {z} definition of FV
= ((((FV(e′)− {y}) ∪ FV(z))− {x}) ∪ FV(v))− {z} induction hypothesis (twice)
= (((FV(λy. e′) ∪ {z})− {x}) ∪ FV(v))− {z} definition of FV
= ((FV(λy. e′)− {x}) ∪ FV(v) ∪ {z})− {z}
= (FV(λy. e′)− {x}) ∪ FV(v).

There is a subtle point that arises in Case 5. We said at the beginning of the proof that we would be doing
structural induction on e; that is, induction on the well-founded subterm relation <. This was a lie. Because
of the change of bound variable necessary in Case 5, we are actually doing induction on the relation of
subterm modulo α-equivalence:

e <α e′
△
= ∃e′′ e′′ < e′ ∧ e =α e′′.

But a moment’s thought reveals that this relation is still well-founded, since α-reduction does not change
the size or shape of the term, so we are ok.

5 Remark

These proofs may seem rather tedious, and one may wonder why we are doing them in such detail. But
of course, this is exactly the point. Formal reasoning about the semantics of the λ-calculus, including such

5



seemingly complicated notions as reductions and substitutions, can be reduced to the mindless application
of a few simple rules. There is no hand-waving, no magic, no hidden behavior. To the extent that we can do
this for real programming languages, we will be better able to understand and predict their behavior and to
automate parts of the reasoning process.

6


