
CS 6110 S16 Handout 2A Proof of Confluence 29 January 2016

In this supplementary lecture we prove that the λ-calculus is confluent. This is result is due to Alonzo
Church (1903–1995) and J. Barkley Rosser (1907–1989) and is known as the Church–Rosser theorem. The
proof given here takes an alternative approach to the standard proof due to Tait and Martin-Löf as given
for example in Barendregt [1] (see also [15, 16]).

1 Terms as Labeled Trees

In the proof of confluence, we will need to talk about occurrences of subterms in a term as designated by a
path from the root. Thus we need to develop notation for terms viewed as labeled trees. We will refer to
this view of terms as the coalgebraic view, although the rationale for this terminology will only become clear
much later in the course.

1.1 Algebraic View of Terms

A ranked alphabet is a set Σ together with an arity function arity : Σ → N. The letters f ∈ Σ are viewed
as operator symbols, and arity(f) ∈ N denotes the arity of f , or the number of inputs of f . The symbol
f is called unary, binary, ternary, or n-ary according as its arity is 1, 2, 3, or n, respectively. It is called a
constant if its arity is 0.

Finite terms over Σ can be defined by induction:

• If t0, . . . , tn−1 are terms and f ∈ Σ with arity(f) = n, then f t0 . . . , tn−1 is a term.

Note the base case n = 0 is included; the first premise is vacuous in that case. This defines terms in prefix
notation, but really we are interested in the abstract syntax.

1.2 Coalgebraic View of Terms

Alternatively, we can define terms as labeled trees. Terms represented in this way are called coterms. Let
N

∗ denote the set of finite-length strings of natural numbers. A subset t ⊆ N∗ is a tree if it is nonempty
and prefix-closed (that is, if αβ ∈ t, then α ∈ t). Any tree must contain the empty string, which is the root
of the tree.

A coterm is then a partial function e : N∗ ⇀ Σ such that

• dom e is a tree;

• if α ∈ dom e, then α i ∈ dom e iff i < arity(e(α)).

The second condition says that a node α of the tree has exactly n children if the arity of its label is n.

A coterm is finite if its domain is a finite set. Thus one advantage of this definition is that it admits infinite
terms.1

1Infinite terms exist in OCaml. Type the following at the interpreter and see what happens: type x = C of x;; let rec

x = C x;;

1

•α

λx

•
x

•
x

c

d

→

α

dd

c

Figure 1: A β-reduction at α

If α ∈ dom e, the subterm of e rooted at α is the coterm e ↾ α = λβ. e(αβ).2 The domain of e ↾ α is
{β | αβ ∈ dom e}. Note that if α is a prefix of β, then e ↾ β is a subterm of e ↾ α.

1.3 Substitution

Another advantage of the coalgebraic view is that we have a more general notion of substitution. We can
speak of substituting a term for a single occurrence of a subterm of e as specified by its location in the tree.

Formally, if α ∈ dom e and d is a term, define

e[d/α]
△
= λβ .

{
d(γ), if β = αγ,

e(β), if α is not a prefix of β.

This is not safe substitution, but raw substitution; we merely replace the subterm of e at α with d.

2 λ-Coterms

A λ-coterm is just a labeled tree as described in the preceding section over a ranked alphabet consisting of
variables x of arity 0, unary binding operators λx, and the binary application operator. Ordinary λ-terms
are just finite λ-coterms.

Now the β-reduction rule takes the following form. Suppose α is a redex in e, say e ↾ α = (λx. c) d. The
corresponding contractum obtained by applying the β-reduction rule is c{d/x}, which we substitute for the
redex at α. The new term is e[c{d/x}/α]. This is illustrated in Fig. 1.

2.1 Acceptable Orderings

If α and β are both redexes in e and α is a proper prefix of β, then e ↾ β is a proper subterm of e ↾ α. If we
reduce α before reducing β, then β will in general no longer be a redex; indeed, it may no longer even exist
in the resulting tree. However, if we reduce β first, then α is still a redex in the resulting tree (although the
subterm rooted at α may have changed), and we can reduce it.

More generally, if A ⊆ dom e is a set of redexes in e, and we reduce the redexes in A in some order consistent
with the subterm relation—that is, we reduce α ∈ A only if all proper extensions αβ ∈ A have already been
reduced—then every redex in A will still be available when it is time to reduce it, and it will be possible to
reduce all of them. Moreover, the actual order does not matter, as long as it is consistent with the subterm
relation.

2Here we are using λ as a meta-operator. Thus λβ. e(αβ) is the function that on input β ∈ N∗ returns the value of e applied
to αβ.

2

Formally, we say that a linear ordering α1, . . . , αn of the elements of A is acceptable if αi = αjβ implies
i ≤ j. In other words, the sequence α1, . . . , αn is a subsequence of some total extension of the partial order
{(αβ, α) | α, β ∈ N∗} (or, if you like, a topological sort of A with respect to the edges (αβ, α)).

Acceptable orderings of a given set of redexes are not unique. However, it does not matter which one we
pick. One can easily prove inductively that for all acceptable orderings of A, the length of the reduction
sequence will be the same, namely the cardinality of A, and the resulting terms will be identical. Let us call
this term θA(e), as it depends only on the starting term e and the set of redexes A, not on the order of the
reductions.

For α ∈ N∗, let α↓ = {αβ | β ∈ N∗}. If α ∈ dom e, then α↓ ∩ dom e represents the set of subterms of e ↾ α.

For A,X ∈ N∗, write A � X if there exists an α such that A ⊆ α↓ and α↓ ∩X = ∅. If A � X, then A and
X are disjoint, and there exists an acceptable ordering of A ∪X such that all elements of A come before all
elements of X.

3 Confluence

We start by proving confluence in some special cases, building up to the general result.

e

θB(e) θA(e)

θB(θA(e))
= θA(θB(e))

B A

A B

Figure 2

Lemma 1. Let A and B be two sets of redexes of e such that all elements of
A are prefix-incomparable to all elements of B. Then θB(θA(e)) and θA(θB(e))
both exist and are equal. This gives the confluent diagram illustrated in Fig. 2.

Proof. Both θB(θA(e)) and θA(θB(e)) represent the reduction of the redexes in
A∪B in different acceptable orders, thus both terms are equal to θA∪B(e).

Lemma 2. Let α be a redex of e, and let A be a set of redexes of e such that
A ⊆ α↓. Then there exists a set B of redexes of θα(e) such that B ⊆ α↓ and

θC(θA(e)) = θB(θα(e)),

where C = {α} if α ̸∈ A and C = ∅ if α ∈ A. This gives the confluent diagram illustrated in Fig. 3.

e

θA(e)

θα(e)

θC(θA(e))
= θB(θα(e))

A
α

C
B

Figure 3

Proof. Suppose first that α ̸∈ A. Let e ↾ α = (λx. c) d. The set A may
contain redexes in c and d. Reducing α first, a copy of d replaces each free
occurrence of x in c (see Fig. 1). If we then reduce the redexes in these
copies of d in some acceptable order, then reduce the remaining redexes
in c in some acceptable order, this yields the same result as reducing
the redexes in d and c in some acceptable order before reducing α, then
reducing α.

Formally, take B = {αγi | 1 ≤ i ≤ m} ∪ {αδiβj | 1 ≤ i ≤ k, 1 ≤ j ≤ n},
where A = {α00γi | 1 ≤ i ≤ m} ∪ {α1βj | 1 ≤ j ≤ n} and the free
occurrences of x in c are located at {α00δ1, . . . , α00δk}. The elements
of A of the form α00γi represent the redexes in c, which after reducing
α become the elements of B of the form αγi. The elements of A of the
form α1βj represent the redexes in d, which after reducing α become the

elements of B of the form αδiβj representing the corresponding redexes in the copies of d that replaced the
free occurrences of x in c. Fig. 1 illustrates the case k = 2.

3

e

θA(e)

•

•

•

•

θX(e)

θX(θA(e))
= θB(θX(e))

A = B0 β1

B1 β2

B2
β3

B3

β1

β2

β3

X1

X0 = X

Figure 4

If α ∈ A, then it must appear last in any acceptable order-
ing of A. By the previous argument, there exists B ⊆ α↓
such that θα(θA−{α}(e)) = θB(θα(e)), therefore θ∅(θA(e)) =
θα(θA−{α}(e)) = θB(θα(e)). 2
Lemma 3. Let A and X be sets of redexes of e such that A�X.
There exists a set B of redexes of θX(e) such that

θX(θA(e)) = θB(θX(e)).

Proof. This follows easily by induction on the cardinality of X
using Lemmas 1 and 2. Starting with X0 = X and B0 = A,
construct a sequence of sets Xi and Bi by taking the elements
of X one at a time in some acceptable order, maintaining the
invariant Bi � Xi. Fig. 4 illustrates the case X = {β1, β2, β3}.2
Lemma 4. Let A be an arbitrary set of redexes of e, and let α
be a redex of e. Then there exist redex sets C of θA(e) and B
of θα(e) such that

θC(θA(e)) = θB(θα(e)).

This gives the confluent diagram illustrated in Fig. 3 (the same diagram as for Lemma 2, but with a different
interpretation of the symbols.)

Proof. Partition A into A1 = α↓ ∩ A and A2 = A − A1. Then A1 � A2. By Lemma 2, there exist a set
B1 ⊆ α↓ of redexes of θα(e) and C1 ⊆ {α} such that

θC1(θA1(e)) = θB1(θα(e)). (1)

Take B = B1 ∪A2. Since B1 ⊆ α↓, C1 ⊆ α↓, and α↓ ∩A2 = ∅, we have B1 � A2 and C1 �A2. By Lemma
3, there exists a set C of redexes of θA2(θA1(e)) = θA(e) such that

θC(θA2(θA1(e))) = θA2(θC1(θA1(e))). (2)

Then

θC(θA(e)) = θC(θA2(θA1(e))) since A1 � A2

= θA2(θC1(θA1(e))) by (2)
= θA2(θB1(θα(e))) by (1)
= θB(θα(e)) since B1 � A2.

Lemma 5. Let e → e′ by some arbitrary sequence of reductions, and let A be a set of redexes of e. Then
there exists a set B of redexes of e′ such that θA(e) → θB(e

′).

Proof. This follows in a straightforward fashion by induction on the length of the reduction e → e′ by
composing the reductions of Lemma 4.

Theorem 6 (Church–Rosser Theorem). Let e → e1 and e → e2 by some arbitrary sequences of reductions.
Then there exists an e3 such that e1 → e3 and e2 → e3.

Proof. Decompose the reduction sequence e → e1 into maximal segments such that the ordering of redexes
is acceptable in each segment. Lemma 5 gives a confluent diagram for each segment, and these can be
composed to get a confluent diagram for the entire reduction sequence e → e1.

4

References

[1] H. P. Barendregt. The Lambda Calculus, Its Syntax and Semantics. North-Holland, 2nd edition, 1984.

[2] Henk P. Barendregt and Jan Willem Klop. Applications of infinitary lambda calculus. Inf. and Comput.,
207(5):559–582, 2009.

[3] James Gosling, Bill Joy, Jr. Guy L. Steele, and Gilad Bracha. The Java Language Specification. Prentice
Hall, 3rd edition, 2005.

[4] John E. Hopcroft and Richard M. Karp. A linear algorithm for testing equivalence of finite automata.
Technical Report 71-114, University of California, 1971.

[5] Jean-Baptiste Jeannin. Capsules and closures. Electron. Notes Theor. Comput. Sci., 276:191–213,
September 2011.

[6] Jean-Baptiste Jeannin and Dexter Kozen. Capsules and separation. In Nachum Dershowitz, editor, Proc.
27th ACM/IEEE Symp. Logic in Computer Science (LICS’12), pages 425–430, Dubrovnik, Croatia, June
2012. IEEE.

[7] Jean-Baptiste Jeannin and Dexter Kozen. Computing with capsules. In Martin Kutrib, Nelma Moreira,
and Rogério Reis, editors, Proc. Conf. Descriptional Complexity of Formal Systems (DCFS 2012),
volume 7386 of Lecture Notes in Computer Science, pages 1–19, Braga, Portugal, July 2012. Springer.

[8] J. W. Klop and R. C. de Vrijer. Infinitary normalization. In S. Artemov, H. Barringer, A. S. d’Avila
Garcez, L. C. Lamb, and J. Woods, editors, We Will Show Them: Essays in Honour of Dov Gabbay,
volume 2, pages 169–192. College Publications, 2005.

[9] Peter J. Landin. The mechanical evaluation of expressions. Computer Journal, 6(4):308–320, 1964.

[10] Saunders MacLane. Categories for the Working Mathematician. Springer-Verlag, New York, 1971.

[11] John McCarthy. History of LISP. In Richard L. Wexelblat, editor, History of programming languages
I, pages 173–185. ACM, 1981.

[12] Robin Milner and Mads Tofte. Co-induction in relational semantics. Theoretical Computer Science,
87(1):209–220, 1991.

[13] Eugenio Moggi. Notions of computation and monads. Information and Computation, 93(1), 1991.

[14] Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.

[15] Robert Pollack. Polishing up the Tait–Martin-Löf proof of the Church–Rosser theorem. In Proc. De
Wintermöte ’95. Department of Computing Science, Chalmers University, Göteborg, Sweden, January
1995.

[16] Masako Takahashi. Parallel reductions in λ-calculus (revised version). Information and Computation,
118(1):120–127, April 1995.

[17] Robert Endre Tarjan. Efficiency of a good but not linear set union algorithm. J. ACM, 22(2):215–225,
1975.

[18] Philip Wadler. Monads for functional programming. In M. Broy, editor, Marktoberdorf Summer School
on Program Design Calculi, volume 118 of NATO ASI Series F: Computer and systems sciences. Springer
Verlag, August 1992.

[19] Glynn Winskel. The Formal Semantics of Programming Languages. MIT Press, 1993.

5

