
CS 6110 S16 Lecture 1 Introduction 27 January 2016

1 Introduction

What is a program? Is it just something that tells the computer what to do? Yes, but there is much more
to it than that. The basic expressions in a program must be interpreted somehow, and a program’s behavior
depends on how they are interpreted. We must have a good understanding of this interpretation, otherwise
it would be impossible to write programs that do what is intended.

It may seem like a straightforward task to specify what a program is supposed to do when it executes.
After all, basic instructions are pretty simple. But in fact this task is often quite subtle and difficult.
Programming language features often interact in ways that are unexpected or hard to predict. Ideally it
would seem desirable to be able to determine the meaning of a program completely by the program text, but
that is not always true, as you well know if you have ever tried to port a C program from one platform to
another. Even for languages that are nominally platform-independent, meaning is not necessarily determined
by program text. For example, consider the following Java fragment.

class A { static int a = B.b + 1; }

class B { static int b = A.a + 1; }

First of all, is this even legal Java? Yes, although no sane programmer would ever write it. So what happens
when the classes are initialized? A reasonable educated guess might be that the program goes into an infinite
loop trying to initialize A.a and B.b from each other. But no, the initialization terminates with initial values
for A.a and B.b. So what are the initial values? Try it and find out, you may be surprised. Can you explain
what is going on? This simple bit of pathology illustrates the difficulties that can arise in describing the
meaning of programs. Luckily, these are the exception, not the rule.

Programs describe computation, but they are more than just lists of instructions. They are mathematical
objects as well. A programming language is a logical formalism, just like first-order logic. Such formalisms
typically consist of

• Syntax, a strict set of rules telling how to distinguish well-formed expressions from arbitrary sequences
of symbols; and

• Semantics, a way of interpreting the well-formed expressions. The word “semantics” is a synonym
for “meaning” or “interpretation”. Although ostensibly plural, it customarily takes a singular verb.
Semantics may include a notion of deduction or computation, which determines how the system performs
work.

In this course we will see some of the formal tools that have been developed for describing these notions
precisely. The course consists of three major components:

• Dynamic semantics—methods for describing and reasoning about what happens when a program runs.

• Static semantics—methods for reasoning about programs before they run. Such methods include type
checking, type inference, and static analysis. We would like to find errors in programs as early as
possible. By doing so, we can often detect errors that would otherwise show up only at runtime,
perhaps after significant damage has already been done.

• Language features—applying the tools of dynamic and static semantics to study actual language fea-
tures of interest, including some that you may not have encountered previously.

1

We want to be as precise as possible about these notions. Ideally, the more precisely we can describe the
semantics of a programming language, the better equipped we will be to understand its power and limitations
and to predict its behavior. Such understanding is essential not only for writing correct programs, but also
for building tools like compilers, optimizers, and interpreters. Understanding the meaning of programs allows
us to ascertain whether these tools are implemented correctly. But the very notion of correctness is subject
to semantic interpretation.

It should be clear that the task before us is inherently mathematical. Initially, we will characterize the
semantics of a program as a function that produces an output value based on some input value. Thus, we
will start by presenting some mathematical tools for constructing and reasoning about functions.

1.1 Binary Relations and Functions

Denote by A×B the set of all ordered pairs (a, b) with a ∈ A and b ∈ B. A binary relation on A×B is just
a subset R ⊆ A × B. The sets A and B can be the same, but they do not have to be. The set A is called
the domain and B the codomain (or range) of R. The smallest binary relation on A×B is the null relation
∅ consisting of no pairs, and the largest binary relation on A × B is A × B itself. The identity relation on
A is {(a, a) | a ∈ A} ⊆ A×A.

An important operation on binary relations is relational composition

R ; S = {(a, c) | ∃b (a, b) ∈ R ∧ (b, c) ∈ S},

where the codomain of R is the same as the domain of S.

A (total) function (or map) is a binary relation f ⊆ A × B in which each element of A is associated with
exactly one element of B. If f is such a function, we write:

f : A → B

In other words, a function f : A → B is a binary relation f ⊆ A×B such that for each element a ∈ A, there
is exactly one pair (a, b) ∈ f with first component a. There can be more than one element of A associated
with the same element of B, and not all elements of B need be associated with an element of A.

The set A is the domain and B is the codomain or range of f . The image of f is the set of elements in B
that come from at least one element in A under f :

f(A)
△
= {x ∈ B | x = f(a) for some a ∈ A}
= {f(a) | a ∈ A}.

The notation f(A) is standard, albeit somewhat of an abuse.

The operation of functional composition is: if f : A → B and g : B → C, then g ◦ f : A → C is the function

(g ◦ f)(x) = g(f(x)).

Viewing functions as a special case of binary relations, functional composition is the same as relational
composition, but the order is reversed in the notation: g ◦ f = f ; g.

A partial function f : A ⇀ B (note the shape of the arrow) is a function f : A′ → B defined on some subset
A′ ⊆ A. The notation dom f refers to A′, the domain of f . If f : A → B is total, then dom f = A.

A function f : A → B is said to be one-to-one (or injective) if a ̸= b implies f(a) ̸= f(b) and onto (or
surjective) if every b ∈ B is f(a) for some a ∈ A.

2

1.2 Representation of Functions

Mathematically, a function is equal to its extension, which is the set of all its (input, output) pairs. One
way to describe a function is to describe its extension directly, usually by specifying some mathematical
relationship between the inputs and outputs. This is called an extensional representation. Another way is
to give an intensional1 representation, which is essentially a program or evaluation procedure to compute
the output corresponding to a given input. The main differences are

• there can be more than one intensional representation of the same function, but there is only one
extension;

• intensional representations typically give a method for computing the output from a given input,
whereas extensional representations need not concern themselves with computation (and seldom do).

A central issue in semantics—and a good part of this course—is concerned with how to go from an intensional
representation to a corresponding extensional representation.

2 The λ-Calculus

The λ-calculus (λ = “lambda”, the Greek letter l)2 was introduced by Alonzo Church (1903–1995) and Stephen
Cole Kleene (1909–1994) in the 1930s to study the interaction of functional abstraction and functional
application. The λ-calculus provides a succinct and unambiguous notation for the intensional representation
of functions, as well as a general mechanism based on substitution for evaluating them.

The λ-calculus forms the theoretical foundation of all modern functional programming languages, including
Lisp, Scheme, Haskell, OCaml, and Standard ML. One cannot understand the semantics of these languages
without a thorough understanding of the λ-calculus.

It is common to use λ-notation in conjunction with other operators and values in some domain (e.g. λx. x+2),
but the pure λ-calculus has only λ-terms and only the operators of functional abstraction and functional
application, nothing else. In the pure λ-calculus, λ-terms act as functions that take other λ-terms as input
and produce λ-terms as output. Nevertheless, it is possible to code common data structures such as Booleans,
integers, lists, and trees as λ-terms. The λ-calculus is computationally powerful enough to represent and
compute any computable function over these data structures. It is thus equivalent to Turing machines in
computational power.

2.1 Syntax

The following is the syntax of the pure untyped λ-calculus. Here pure means there are no constructs other
than λ-terms, and untyped means that there are no restrictions on how λ-terms can be combined to form
other λ-terms; every well-formed λ-term is considered meaningful.

A λ-term is defined inductively as follows. Let Var be a countably infinite set of variables x, y,

• Any variable x ∈ Var is a λ-term.
1Note the spelling: intensional and intentional are not the same!
2Why λ? To distinguish the bound variables from the unbound (free) variables, Church placed a caret on top of the bound

variables, thus λx. x+ yx2 was represented as x̂ . x+ yx2. Apparently, the printers could not handle the caret, so it moved to
the front and became a λ.

3

• If e is a λ-term, then so is λx. e (functional abstraction).

• If e1 and e2 are λ-terms, then so is e1 · e2 (functional application).

We usually omit the application operator ·, writing e1 (e2), (e1 e2), or even e1 e2 for e1 · e2. Intuitively, this
term represents the result of applying of e1 as a function to e2 as its input. The term λx. e represents a
function with input parameter x and body e.

2.2 Examples

A term representing the identity function is id = λx. x. The term λx. λa. a represents a function that ignores
its argument and return the identity function. This is the same as λx. id.

The term λf . fa represents a function that takes another function f as an argument and applies it to a.
Thus we can define functions that can take other functions as arguments and return functions as results;
that is, functions are first-class values. The term λv. λf . fv represents a function that takes an argument v
and returns a function λf . fv that calls its argument—some function f—on v. A function that takes a pair
of functions f and g and returns their composition g ◦ f is represented by λf . λg. λx. g(fx). We could define
the composition operator this way.

In the pure λ-calculus, every λ-term represents a function, since any λ-term can appear on the left-hand side
of an application operator.

2.3 BNF Notation

Backus–Naur form (BNF) is a kind of grammar used to specify the syntax of programming languages. It is
named for John Backus (1924–2007), the inventor of Fortran, and Peter Naur (1928–), the inventor of Algol
60.

We can express the syntax of the pure untyped λ-calculus very concisely using BNF notation:

e ::= x | e1 e2 | λx. e

Here the e is a metavariable representing a syntactic class (in this case λ-terms) in the language. It is not
a variable at the level of the programming language. We use subscripts to differentiate metavariables of the
same syntactic class. In this definition, e0, e1 and e all represent λ-terms.

The pure untyped λ-calculus has only two syntactic classes, variables and λ-terms, but we shall soon see
other more complicated BNF definitions.

2.4 Other Domains

The λ-calculus can be used in conjunction with other domains of primitive values and operations on them.
Some popular choices are the natural numbers N = {0, 1, 2, . . .} and integers Z = {. . . ,−2,−1, 0, 1, 2, . . .}
along with the basic arithmetic operations +, · and tests =,≤, <; and the two-element Boolean algebra
2 = {false, true} along with the basic Boolean operations ∧ (and), ∨ (or), ¬ (not), and ⇒ (implication).3

3The German mathematician Leopold Kronecker (1823–1891) was fond of saying, “God created the natural numbers; all else
is the work of Man.” Actually, there is not much evidence that God created N. But for 2, there is no question:

And the earth was without form, and void. . .And God said, Let there be light. . .And God divided the light from
the darkness. . . —Genesis 1 : 2–4

4

The λ-calculus gives a convenient notation for describing functions built from these objects. We can incor-
porate them in the language by assuming there is a constant for each primitive value and each distinguished
operation, and extending the definition of term accordingly. This allows us to write expressions like λx. x2

for the squaring function on integers.

In mathematics, it is common to define a function f by describing its value f(x) on a typical input x. For
example, one might specify the squaring function on integers by writing f(x) = x2, or anonymously by
x 7→ x2. Using λ-notation, we would write f = λx. x2 or λx. x2, respectively.

2.5 Abstract Syntax and Parsing Conventions

The BNF definition above actually defines the abstract syntax of the λ-calculus; that is, we consider a term
to be already parsed into its abstract syntax tree. In the text, however, we are constrained to use sequences
of symbols to represent terms, so we need some conventions to be sure that they are read unambiguously.

We use parentheses to show explicitly how to parse expressions, but we also assign a precedence to the
operators in order to save parentheses. Conventionally, function application is higher precedence (binds
tighter) than λ-abstraction; thus λx. x λy. y should be read as λx. (xλy. y), not (λx. x) (λy. y). If you want
the latter, you must use explicit parentheses.

Another way to view this is that the body of a λ-abstraction λx. . . . extends as far to the right as it can—it
is greedy. Thus the body is delimited on the right only by a right parenthesis whose matching left parenthesis
is to the left of the λx, or by the end of the entire expression.

Another convention is that application is left-associative, which means that e1 e2 e3 should be read as
(e1 e2) e3. If you want e1 (e2 e3), you must use parentheses.

It never hurts to include parentheses if you are not sure.

2.6 Terms and Types

Typically, programming languages have two different kinds of expressions: terms and types. We have not
talked about types yet, but we will soon. A term is an expression representing a value; a type is an expression
representing a class of similar values.

The value represented by a term is determined at runtime by evaluating the term; its value at compile time
may not be known. Indeed, it may not even have a value if the evaluation does not terminate. On the other
hand, types can be determined at compile time and are used by the compiler to rule out ill-formed terms.
When we say a given term has a given type (for example, λx.x2 has type Z → Z), we are saying that the
value of the term after evaluation at runtime, if it exists, will be a member of the class of similar values
represented by the type.

In the pure untyped λ-calculus, there are no types, and all terms are meaningful.

2.7 Multi-Argument Functions and Currying

We would like to allow multiple arguments to a function, as for example in (λ(x, y). x+ y) (5, 2). However,
we do not need to introduce a primitive pairing operator to do this. Instead, we can write (λx. λy. x+y) 5 2.
That is, instead of the function taking two arguments and adding them, the function takes only the first
argument and returns a function that takes the second argument and then adds the two arguments. The

5

notation λx1 . . . xn . e is considered an abbreviation for λx1 . λx2 . λx3 λxn . e. Thus we consider the multi-
argument version of the λ-calculus as just syntactic sugar. The “desugaring” transformation

λx1 . . . xn . e ⇒ λx1 . λx2 . λxn . e

e0 (e1, . . . , en) ⇒ e0 e1 e2 · · · en

for this particular form of sugar is called currying after Haskell B. Curry (1900–1982).

3 Preview

Next time we will discuss capture-avoiding (safe) substitution and the computational rules of the λ-calculus,
namely α-, β-, and η-reduction. This is the calculus part of the λ-calculus.

References

[1] H. P. Barendregt. The Lambda Calculus, Its Syntax and Semantics. North-Holland, 2nd edition, 1984.

[2] Henk P. Barendregt and Jan Willem Klop. Applications of infinitary lambda calculus. Inf. and Comput.,
207(5):559–582, 2009.

[3] James Gosling, Bill Joy, Jr. Guy L. Steele, and Gilad Bracha. The Java Language Specification. Prentice
Hall, 3rd edition, 2005.

[4] John E. Hopcroft and Richard M. Karp. A linear algorithm for testing equivalence of finite automata.
Technical Report 71-114, University of California, 1971.

[5] Jean-Baptiste Jeannin. Capsules and closures. Electron. Notes Theor. Comput. Sci., 276:191–213,
September 2011.

[6] Jean-Baptiste Jeannin and Dexter Kozen. Capsules and separation. In Nachum Dershowitz, editor, Proc.
27th ACM/IEEE Symp. Logic in Computer Science (LICS’12), pages 425–430, Dubrovnik, Croatia, June
2012. IEEE.

[7] Jean-Baptiste Jeannin and Dexter Kozen. Computing with capsules. In Martin Kutrib, Nelma Moreira,
and Rogério Reis, editors, Proc. Conf. Descriptional Complexity of Formal Systems (DCFS 2012),
volume 7386 of Lecture Notes in Computer Science, pages 1–19, Braga, Portugal, July 2012. Springer.

[8] J. W. Klop and R. C. de Vrijer. Infinitary normalization. In S. Artemov, H. Barringer, A. S. d’Avila
Garcez, L. C. Lamb, and J. Woods, editors, We Will Show Them: Essays in Honour of Dov Gabbay,
volume 2, pages 169–192. College Publications, 2005.

[9] Peter J. Landin. The mechanical evaluation of expressions. Computer Journal, 6(4):308–320, 1964.

[10] Saunders MacLane. Categories for the Working Mathematician. Springer-Verlag, New York, 1971.

[11] John McCarthy. History of LISP. In Richard L. Wexelblat, editor, History of programming languages
I, pages 173–185. ACM, 1981.

[12] Robin Milner and Mads Tofte. Co-induction in relational semantics. Theoretical Computer Science,
87(1):209–220, 1991.

[13] Eugenio Moggi. Notions of computation and monads. Information and Computation, 93(1), 1991.

[14] Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.

6

[15] Robert Pollack. Polishing up the Tait–Martin-Löf proof of the Church–Rosser theorem. In Proc. De
Wintermöte ’95. Department of Computing Science, Chalmers University, Göteborg, Sweden, January
1995.

[16] Masako Takahashi. Parallel reductions in λ-calculus (revised version). Information and Computation,
118(1):120–127, April 1995.

[17] Robert Endre Tarjan. Efficiency of a good but not linear set union algorithm. J. ACM, 22(2):215–225,
1975.

[18] Philip Wadler. Monads for functional programming. In M. Broy, editor, Marktoberdorf Summer School
on Program Design Calculi, volume 118 of NATO ASI Series F: Computer and systems sciences. Springer
Verlag, August 1992.

[19] Glynn Winskel. The Formal Semantics of Programming Languages. MIT Press, 1993.

7

