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1 Intuitionistic Logic and Constructive Mathematics

We have previously observed that several familiar type judgments ⊢ e : τ of the pure simply-typed λ-calculus
correspond to a tautologies of propositional logic:

type judgment propositional tautology

⊢ I :α→ α P → P
⊢ K :α→ β → α P → (Q→ P )

⊢ S : (α→ β → γ) → (α→ β) → (α→ γ) (P → Q→ R) → (P → Q) → (P → R)

This is no accident. It turns out that all derivable type judgments ⊢ e : τ (with the empty environment to
the left of the turnstile) give propositional tautologies. This is because the typing rules of λ→ correspond
exactly to the proof rules of propositional intuitionistic logic.

Intuitionistic logic is the basis of constructive mathematics. Constructive mathematics takes a much more
conservative view of truth than classical mathematics. It is concerned less with truth than with provability.
Two of its main proponents were Kronecker and Brouwer. These views generated great controversy in the
mathematical world when they first appeared.

In constructive mathematics, not all deductions of classical logic are considered valid. For example, to
prove in classical logic that there exists an object having a certain property, it is enough to assume that
no such object exists and derive a contradiction. Intuitionists would not consider this argument valid.
Intuitionistically, you must actually construct the object and prove that it has the desired property.

Intuitionists do not accept the law of double negation: P ↔ ¬¬P . They do believe that P → ¬¬P , that is,
if P is true then it is not false; but they do not believe ¬¬P → P , that is, even if P is not false, then that
does not automatically make it true.

Similarly, intuitionists do not accept the law of the excluded middle P ∨¬P . In order to prove P ∨¬P , you
must prove either P or ¬P . It may well be that neither is provable, in which case the intuitionist would not
accept that P ∨ ¬P .

For intuitionists, the implication P → Q has a much stronger meaning than merely ¬P ∨Q, as in classical
logic. To prove P → Q, one must show how to construct a proof of Q from any given proof of P . So a proof
of P → Q is a (computable) function from proofs of P to proofs of Q. Similarly, to prove P ∧Q, you must
prove both P and Q; thus a proof of P ∧Q is a pair consisting of a proof of P and a proof of Q.

1.1 Example

Here is an example of a proof that would not be accepted by an intuitionist.

Theorem There exist irrational numbers a and b such that ab is rational.

Proof. Either
√
2
√
2

is rational or not. If it is, take a = b =
√
2 and we are done. If it is not, take a =

√
2
√
2

and b =
√
2; then ab = (

√
2
√
2
)
√
2 =

√
2
2
= 2, and again we are done.
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Now an intuitionist would not like this, because we have not constructed a definite a and b with the desired
property. We have used the law of the excluded middle, which the intuitionist would regard as cheating.1

2 Syntax

Syntactically, formulas φ,ψ, . . . of intuitionistic logic look the same as their classical counterparts. At the
propositional level, we have propositional variables P,Q,R, . . . and formulas

φ ::= ⊤ | ⊥ | P | φ→ ψ | φ ∨ ψ | φ ∧ ψ | ¬φ.

We might also add a second-order quantifier ∀P ranging over propositions:

φ ::= · · · | ∀P .φ.

3 Natural Deduction (Gentzen, 1943)

Intuitionistic logic uses a sequent calculus to derive the truth of formulas. Assertions are judgments of the
form φ1, . . . , φn ⊢ φ, which means that φ can be derived from the assumptions φ1, . . . , φn. If ⊢ φ without
assumptions, then φ is a theorem of intuitionistic logic. The system is called natural deduction.

As we write down the proof rules, it will be clear that they correspond exactly to the typing rules of the
pure simply-typed λ-calculus λ→ (and with quantifiers, System F). We will show them side by side. There
are generally introduction and elimination rules for each operator.

intuitionistic logic λ→ or System F type system

(axiom) Γ, φ ⊢ φ Γ, x : τ ⊢ x : τ

(→-intro)
Γ, φ ⊢ ψ
Γ ⊢ φ→ ψ

Γ, x : σ ⊢ e : τ
Γ ⊢ (λx : σ. e) : σ → τ

(→-elim)
Γ ⊢ φ→ ψ Γ ⊢ φ

Γ ⊢ ψ
Γ ⊢ e0 : σ → τ Γ ⊢ e1 : σ

Γ ⊢ (e0 e1) : τ

(∧-intro)
Γ ⊢ φ Γ ⊢ ψ
Γ ⊢ φ ∧ ψ

Γ ⊢ e1 : σ Γ ⊢ e2 : τ
Γ ⊢ (e1, e2) : σ ∗ τ

(∧-elim)
Γ ⊢ φ ∧ ψ
Γ ⊢ φ

Γ ⊢ φ ∧ ψ
Γ ⊢ ψ

Γ ⊢ e : σ ∗ τ
Γ ⊢ #1 e : σ

Γ ⊢ e : σ ∗ τ
Γ ⊢ #2 e : τ

(∨-intro)
Γ ⊢ φ

Γ ⊢ φ ∨ ψ
Γ ⊢ ψ

Γ ⊢ φ ∨ ψ
Γ ⊢ e : σ

Γ ⊢ inlσ+τ : eσ + τ

Γ ⊢ e : τ
Γ ⊢ inrσ+τ : eσ + τ

(∨-elim)
Γ ⊢ φ ∨ ψ Γ ⊢ φ→ χ Γ ⊢ ψ → χ

Γ ⊢ χ
Γ ⊢ e : σ + τ Γ ⊢ e1 : σ → ρ Γ ⊢ e2 : τ → ρ

Γ ⊢ case e0 of e1 | e2 : ρ

(∀-intro)
Γ, P ⊢ φ
Γ ⊢ ∀P .φ

∆, α; Γ ⊢ e : τ α /∈ FV(Γ)

∆; Γ ⊢ (Λα. e) : ∀α.τ

(∀-elim)
Γ ⊢ ∀P .φ

Γ ⊢ φ{ψ/P}
∆; Γ ⊢ e : ∀α.τ ∆ ⊢ σ
∆; Γ ⊢ (e σ) : τ {σ/α}

The →-elimination rule is often called modus ponens.

1It is possible to give a constructive proof using only elementary facts. Hint: consider
√
2
log2 9.
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4 The Brouwer–Heyting–Kolmogorov (BHK) Principle

The fact that propositions in intuitionistic logic correspond to types in our λ-calculus type systems is known
as the Brouwer–Heyting–Kolmogorov (BKH) interpretation or propositions as types principle, and sometimes
the Curry–Howard isomorphism (although neither is it due to Curry and Howard nor is it an isomorphism).
The analogy is far reaching:

type theory logic
τ type φ proposition
τ inhabited type φ theorem
e well-typed program π proof
→ function space → implication
* product ∧ conjunction
+ sum ∨ disjunction
∀ type quantifier ∀ second-order quantifier
1 unit ⊤ truth
0 void ⊥ falsity

A proof in intuitionistic logic is a construction, which is essentially a program (λ-term). Saying that a
proposition has an intuitionistic or constructive proof says essentially that the corresponding type is inhabited
by a λ-term.

If we are given a well-typed term in System F or λ→, then its proof tree will look exactly like the proof
tree for the corresponding formula in intuitionistic logic. This means that every well-typed program proves
something, that is, it is a proof in constructive logic. Conversely, every theorem in constructive logic
corresponds to an inhabited type. Several automated deduction systems (for example, Nuprl and Coq) are
based on this idea.

5 Theorem Proving and Type Checking

We have seen that type inference is the process of inferring a type for a given λ-term. Under the propositions-
as-types principle, this is the same as determining what theorem a given proof proves. Theorem proving,
on the other hand, is going in the opposite direction: Given a formula, does it have a proof? Equivalently,
given a type, is it inhabited?

For example, consider the formula expressing transitivity of implication:

∀P,Q,R . ((P → Q) ∧ (Q→ R)) → (P → R)

Under the propositions-as-types principle, this is related to the type

∀α, β, γ . (α→ β) ∗ (β → γ) → (α→ γ).

If we can construct a term of this type, we will have proved the theorem in intuitionistic logic. The program

Λα, β, γ. λp : (α→ β) ∗ (β → γ). λx : α. (#2 p) ((#1 p) x)

does it. This is a function that takes a pair of functions as its argument and returns their composition. The
proof tree that establishes the typing of this function is essentially an intuitionistic proof of the transitivity
of implication.

Here is another example. Consider the formula

∀P,Q,R . (P ∧Q→ R) ↔ (P → Q→ R)
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The double implication ↔ is an abbreviation for the conjunction of the implications in both directions. It
says that the two formulas on either side are propositionally equivalent. The typed expressions corresponding
to each side of the formula above are

α ∗ β → γ α→ β → γ.

We know that any term of the first type can be converted to one of the second by currying, and we can go
in the opposite direction by uncurrying. The two λ-terms that convert a function to its curried form and
back constitute a proof of the logical statement.

6 A Digression on Heyting Algebra

There are fewer formulas that are considered intuitionistically valid than classically valid. The law of double
negation (¬¬φ → φ), the law of excluded middle (φ ∨ ¬φ), and proof by contradiction or reductio ad
absurdum are no longer accepted.

Boolean algebra is to classical logic as Heyting algebra is to intuitionistic logic. A Heyting algebra is an
algebraic structure of the same signature as Boolean algebra, but satisfying only those equations that are
provable intuitionistically. Whereas the free Boolean algebra on n generators has 22

n

elements, the free
Heyting algebra on one generator has infinitely many elements.
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¬¬P → P¬P ∨ ¬¬P

⊤
...

Free Heyting algebra on one generator

The picture on the right is sometimes called the Rieger–Nishimura ladder.

7 Uninhabited Types

Since the proposition ⊥ is not provable, it follows that if it corresponds to a type 0, that type must be
uninhabited: there is no term with that type. Of course, ⊥ is not the only uninhabited type; for example,
the type ∀α.α also corresponds to logical falsity and is uninhabited as well.

Note that we can produce terms with these types if we have recursive functions, as in the following term
with type 0:

(rec f : int → 0.λx : int. f(x)) 42
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However, the typing rule for recursive functions corresponds to a logic rule that makes the logic inconsistent:
it assumes what it wants to prove!

Γ, y : τ → τ ′, x : τ ⊢ e : τ ′

Γ ⊢ (rec y : τ → τ ′.λx : τ . e) : τ → τ ′
Γ, φ⇒ φ′, φ ⊢ φ′

Γ ⊢ φ⇒ φ′

Thus, we can think of 0 as the type of a term that does not actually return to its surrounding context.

8 Continuations and Negation

What is the significance of negation? We know that logically ¬φ is equivalent to φ ⇒ ⊥, which suggests
that we can think of ¬φ as corresponding to a function τ → 0. We have seen functions that accept a type
and do not return a value before: continuations have that behavior. If φ corresponds to τ , a reasonable
interpretation of ¬φ is as a continuation expecting a τ . Negation corresponds to turning outputs into inputs.

As we saw above with currying and uncurrying, meaning-preserving program transformations can have
interesting logical interpretations. What about conversion to continuation-passing style? We represent a
continuation k expecting a value of type τ as a function with type τ → 0.

We can then define CPS conversion as a type-preserving translation JΓ ⊢ e : τ K. Here we include the entire
type derivation Γ ⊢ e : τ inside the J·K because types are not unique and the translation depends on the
typing. The translation is type-preserving in the sense that a well-typed source term (Γ ⊢ e : τ) translates
to a well-typed target term:

GJΓK ⊢ JΓ ⊢ e : τ K : T Jτ K.
The translation of the typing context GJΓK simply translates all the contained variables:

GJx1 : τ1, . . . , xn : τn K = x1 : T Jτ1 K, . . . , xn : T Jτn K.
The soundness of the translation can be seen by induction on the typing derivation.

JΓ, x : τ ⊢ x : τ K = λk : T Jτ K → 0. k xJΓ ⊢ (λx : τ . e) : τ → τ ′ K = λk : T Jτ → τ ′ K → 0. k (λk′ : T Jτ ′ K → 0. λx : T Jτ K. JΓ, x : τ ⊢ e : τ ′ Kk′)JΓ ⊢ (e0 e1) : τ
′ K = λk : T Jτ ′ K → 0. JΓ ⊢ e0 : τ → τ ′ K (λf : T Jτ → τ ′ K. JΓ ⊢ e1 : τ K (λv : T Jτ K. f k v))

To make this type-check, we define the type translation T J·K as follows:

T JB K = B

T Jτ → τ ′ K = (T Jτ ′ K → 0) → (T Jτ K → 0)

Note that the logical interpretation of the translation of a function type corresponds to the use of the
contrapositive: (φ⇒ ψ) ⇒ (¬ψ ⇒ ¬φ).

By induction on the typing derivation, we can see that CPS conversion converts a source term of type τ into
a target term of type (T Jτ K → 0) → 0. Since programs correspond to proofs, CPS conversion shows how
to convert a proof of proposition φ into a proof of proposition ¬¬φ. In other words, CPS conversion proves
the admissibility in constructive logic of the rule for introducing double negation:

φ
¬¬φ

However, we are unable to invert CPS translation, and similarly we are unable (constructively) to remove
double negation.
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9 Extracting Computational Content

Many automated deduction systems, such as NuPrl and Coq, are based on constructive logic. Automatic
programming was a significant research direction that motivated the development of these systems. The idea
was that a constructive proof of the existence of a function would automatically yield a program to compute
it: the statement asserting the existence of the function is a type, and a constructive proof yields a λ-term
inhabiting that type. For example, to obtain a program computing square roots, one merely has to give a
constructive proof of the statement ∀x ≥ 0 ∃y y2 = x.

10 Other Directions

If second-order constructive predicate logic corresponds to System F, do other logics correspond to new kinds
of programming language features? This has been an avenue of fruitful exploration over the last couple of
decades, with programming-language researchers deriving insights from classical logic, higher-order, and
linear logics that help guide the design of useful language features.

For example, linear logic is a logic that keeps track of resources. One may only use an assumption in the
application of a rule once; the assumption is consumed and may not be reused. This corresponds to functions
that consume their arguments, and hence is a possible model for systems with bounded resources.
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