
Advanced Programming Languages Problem Set 3
CS 6110 Spring 2015 Due: Weds. March 25, 2015

Problem Set 3

Exercises

1. (a) We have used primitive recursion with simple types,

e.g. add : N→ N→ N{
add 0 y = y
add S(x) y = S(add x y)

Prove that add and mult as defined before are total functions on N,
e.g. have type N → N → N. We could also define the type N × N of
ordered pairs of numbers, < n,m >. In this case we could assign the
type N× N→ N

(b) We can define higher-order primitive recursion as follows:

R a b 0 = a
R a b S(n) = b n (R a b n)

Where a ∈ α, b ∈ N→ α→ α, 0 ∈ N, S : N→ N
R : α→ (N → α→ α)→ (N→ α)

Define
n∑

i=0

f(i) with higher-order primitive recursions.

Give the types. Prove that functions defined by higher order primitive
recursion from (total) computable functions are total. Take α to be N
for the proof.

2. Prove that x ∗ y = y ∗ x using Goodstein’s rules from Lecture 22.

3. Sketch how to state Euclid’s Theorem in primitive recursive arithmetic
that there are an unbounded number of primes.

1



4. This problem explores the possibility of adding partial types and a fix
construct to simply typed lambda calculus (STLC). First read a formal
presentation of STLC at : http://www.cis.upenn.edu/~bcpierce/

sf/current/Stlc.html In particular, pay attention to Coq definitions
of ty , tm, step and has type which respectively define the syntax of
types, syntax of terms and the one step evaluation relation and the
typing relation.

To add partial types, we add new clauses to each of the above defini-
tions. The new definitions can be found at: http://www.cs.cornell.
edu/~aa755/CS6110/StlcPart.html In particular, the last 1,1,2,2 clauses
respectively are new in the definitions of ty , tm, step and has type.

The new rules for step, the one step evaluation relation characterize
how the new fix construct computes in one step. These can also be
understood as follows:

f 7→ f ′
ST Fix

fix f 7→ fix f ′

ST FixUnfold
fix f 7→ f (fix f)

The rules for has type, the typing relation characterize the members of
partial types. These can also be understood as follows:

Γ ` t : T
T TotalPart

Γ ` t : T

Γ ` f : T → T
T Fix

Γ ` fix f : T

The above file also has examples that use the above rules to prove that
true and fix (λt : Bool.t) are members of the partial type Bool.

You have to prove that the progress theorem of STLC still holds af-
ter extending STLC with partial types and fix in the above way.
The theorem has been stated without proof at the end of the above
file. You might find it useful to look at the proof of this theorem
for the original STLC: http://www.cis.upenn.edu/~bcpierce/sf/

current/StlcProp.html#lab682

2

http://www.cis.upenn.edu/~bcpierce/sf/current/Stlc.html
http://www.cis.upenn.edu/~bcpierce/sf/current/Stlc.html
http://www.cs.cornell.edu/~aa755/CS6110/StlcPart.html
http://www.cs.cornell.edu/~aa755/CS6110/StlcPart.html
http://www.cis.upenn.edu/~bcpierce/sf/current/StlcProp.html#lab682
http://www.cis.upenn.edu/~bcpierce/sf/current/StlcProp.html#lab682

