Lecture 8

Topics

- 1. Comments on proof style for homework.
- 2. There is a "one point basis" several different ones.

$$\mathbf{X} \equiv \overline{\lambda(x.x(x\mathbf{S}(\mathbf{K}^3\mathbf{I})\mathbf{K}))}$$

Also note, $Y \equiv WS(BWB)$, add to the dictionary.

- 3. How do we define the *partial recursive functions*, and what do we usually mean by them?
- 4. Development of the *primitive recursive functions*. The primitive recursion formalism is a very simple *subrecursive programming language* just as Coq is.

Comments on PS1:

The condition is "x is **not free** in b" in problem 2.

Partial Recursive Functions

Defining the partial recursive functions, \mathbb{PR} , is to first define the *primitive recursive functions* and then add the "least number operator". Kleene proceeds this way. The pattern of primitive recursion is typically used to define addition, multiplication, and exponentiation recursively.

$$a_0(x,y) = x+1 \qquad S(x) = x+1 \qquad \frac{\text{Note}}{a_0(x,y)} = S(x)$$

$$a_1(x,y) = add(x,y)$$

$$add(0,y) = y \qquad \text{Note}$$

$$add(S(x),y) = S(add(x,y)) \qquad S(add(x,y)) = a_0(a_1(x,y),y)$$

$$a_2(x,y) = mult(x,y)$$

$$mult(0,y) = 0 \qquad \text{Note}$$

$$mult(S(x),y) = add(mult(x,y),y) \qquad add(mult(x,y),y) = a_1(a_2(x,y),y)$$

Etc. See notes on Examples of Primitive Recursion.

Why are these special?

Interesting facts about combinators (from Mark Bickford)

- The programming language Miranda (mentioned in our textbook because Simon Thompson was part of the Miranda project) was compiled to combinators.
- Burroughs computer corporation (for which Dykstra consulted) was building a combinator based computer. Its instruction set was like this:

```
\mathbf{S}fgx x goes to both (fx)(fg)

\mathbf{C}fgx x goes to one (g) f(gx)

\mathbf{B}fgx x goes to the other (f) (fx)g

\mathbf{P}fgx x goes to neither \mathbf{P}g
```

• Mayer Goldberg uses large bases, up to 12, and thinks of the combinators as points in high dimensional space with *computation as paths* in those "spaces".

Kleene distinguishes two instances of the basic primitive recursive scheme 5a and 5b. The first four cases of his definition are:

(1)
$$S(x) = x + 1$$
 successor

(2)
$$Const(x_1, ..., x_n) = c$$
 constant

(3)
$$Proj_i(x_1, ..., x_n) = x_i$$
 projection

(4)
$$f(x_1,...,x_n) = h(g_1(x_1,...,x_n),...,g_m(x_1,...,x_n))$$
 composition

(5_a)
$$f(0) = c$$

 $f(x+1) = ind(x, f(x))$

(5_b)
$$f(0, y_1, ..., y_n) = g(y_1, ..., y_n)$$
 primitive recursion $f(x+1, y_1, ..., y_n) = h(x, f(x, y_1, ..., y_n), y_1, ..., y_n)$

A function is *primitive recursive* iff it can be defined by a sequence of applications of these five operations. What is a good name for (5_a) ?

Note, there is a natural way of extending the sequence

```
a_0(x, y), a_1(x, y), a_2(x, y)
Successor addition multiplication
What is next? How to define it?
```

How can we define these functions with just S and K?!

Defining primitive recursion with combinators.

We clearly need a way to accomplish the following tasks.

1. Define the natural numbers 0, S(0), S(S(0)), ...

- 2. Define a conditional, if b(x) then t(x) else f(x).
- 3. Define recursion.

One of these, the central operator, we have already defined. What is that?

Let \bar{n} be the combinator for the number n, define it as follows

$$\frac{\bar{0} \equiv \mathbf{KI}}{S(n)} \equiv \mathbf{SB}\bar{n}$$

Then we get the sequence of "numbers".

$$0, 1, 2, 3, 4, \dots$$

What is the conditional? It is called D for decide.

$$\mathbf{D} \equiv [x, y, z].z(\mathbf{K}y)x$$

This has the key property

$$\mathbf{D}XY\overline{0} = X$$

 $\mathbf{D}XY\overline{S(n)} = Y$ Can also write $\mathbf{D}XY\overline{n+1} = Y$

Now we have all we need. See if you can define addition using the idea from primitive recursion.

For the philosophically inclined, how would *you* define the number 0, the number 1, etc. What is the "real meaning"? Is there such a thing? What is it in set theory? What is the computational meaning of 0? Of recursion?