## Lecture 8

## Topics

1. Comments on proof style for homework.
2. There is a "one point basis" several different ones.

$$
\mathbf{X} \equiv \overline{\lambda\left(x \cdot x\left(x \mathbf{S}\left(\mathbf{K}^{3} \mathbf{I}\right) \mathbf{K}\right)\right)}
$$

Also note, $\mathbf{Y} \equiv \mathbf{W S}(\mathbf{B W B})$, add to the dictionary.
3. How do we define the partial recursive functions, and what do we usually mean by them?
4. Development of the primitive recursive functions. The primitive recursion formalism is a very simple subrecursive programming language just as Coq is.

Comments on PS1:
The condition is "x is not free in b" in problem 2 .

## Partial Recursive Functions

Defining the partial recursive functions, $\mathbb{P R}$, is to first define the primitive recursive functions and then add the "least number operator". Kleene proceeds this way. The pattern of primitive recursion is typically used to define addition, multiplication, and exponentiation recursively.

$$
\begin{array}{ll}
a_{0}(x, y)=x+1 \quad S(x)=x+1 & \overline{a_{0}(x, y)}=S(x) \\
a_{1}(x, y)=\operatorname{add}(x, y) & \\
\quad \operatorname{add}(0, y)=y & \underline{\text { Note }} \\
\quad \operatorname{add}(S(x), y)=S(a d d(x, y)) & S(\operatorname{add}(x, y))=a_{0}\left(a_{1}(x, y), y\right) \\
a_{2}(x, y)=\operatorname{mult}(x, y) & \\
\operatorname{mult}(0, y)=0 & \underline{\text { Note }} \\
\operatorname{mult}(S(x), y)=\operatorname{add}(\operatorname{mult}(x, y), y) & \operatorname{add}(\operatorname{mult}(x, y), y)=a_{1}\left(a_{2}(x, y), y\right)
\end{array}
$$

Etc. See notes on Examples of Primitive Recursion.

Why are these special?

Interesting facts about combinators (from Mark Bickford)

- The programming language Miranda (mentioned in our textbook because Simon Thompson was part of the Miranda project) was compiled to combinators.
- Burroughs computer corporation (for which Dykstra consulted) was building a combinator based computer. Its instruction set was like this:

| $\mathbf{S} f g x$ | $x$ goes to both | $(f x)(f g)$ |
| :--- | :--- | :--- |
| $\mathbf{C} f g x$ | $x$ goes to one $(g)$ | $f(g x)$ |
| $\mathbf{B} f g x$ | $x$ goes to the other $(f)$ | $(f x) g$ |
| $\mathbf{P} f g x$ | $x$ goes to neither | $\mathbf{P} g$ |

- Mayer Goldberg uses large bases, up to 12 , and thinks of the combinators as points in high dimensional space with computation as paths in those "spaces".

Kleene distinguishes two instances of the basic primitive recursive scheme 5a and 5b. The first four cases of his definition are:

$$
\left.\begin{array}{ll}
\text { (1) } S(x)=x+1 & \text { successor } \\
\text { (2) } \operatorname{Const}\left(x_{1}, \ldots, x_{n}\right)=c & \text { constant } \\
\text { (3) } \operatorname{Proj}_{i}\left(x_{1}, \ldots, x_{n}\right)=x_{i} & \text { projection } \\
\text { (4) } f\left(x_{1}, . ., x_{n}\right)=h\left(g_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, g_{m}\left(x_{1}, \ldots, x_{n}\right)\right) & \text { composition } \\
\left(5_{a}\right) & f(0)=c \\
& f(x+1)=\operatorname{ind}(x, f(x)) \\
\left(5_{b}\right) & f\left(0, y_{1}, \ldots, y_{n}\right)=g\left(y_{1}, \ldots, y_{n}\right) \\
& f\left(x+1, y_{1}, \ldots, y_{n}\right)=h\left(x, f\left(x, y_{1}, \ldots, y_{n}\right), y_{1}, \ldots, y_{n}\right)
\end{array}\right)
$$

A function is primitive recursive iff it can be defined by a sequence of applications of these five operations. What is a good name for $\left(5_{a}\right)$ ?
Note, there is a natural way of extending the sequence
$a_{0}(x, y), \quad a_{1}(x, y), \quad a_{2}(x, y)$
Successor addition multiplication
What is next? How to define it?
How can we define these functions with just $\mathbf{S}$ and $\mathbf{K}$ ?!

## Defining primitive recursion with combinators.

We clearly need a way to accomplish the following tasks.

1. Define the natural numbers $0, S(0), S(S(0)), \ldots$

$$
0, \quad 1, \quad 2 \ldots
$$

2. Define a conditional, if $b(x)$ then $t(x)$ else $f(x)$.
3. Define recursion.

One of these, the central operator, we have already defined. What is that?
Let $\bar{n}$ be the combinator for the number $n$, define it as follows

$$
\begin{aligned}
& \overline{0} \equiv \mathbf{K I} \\
& \overline{S(n)} \equiv \mathbf{S B} \bar{n}
\end{aligned}
$$

Then we get the sequence of "numbers".
$0, \quad 1,2, \quad 3, \quad 4, \ldots$
KI, I, SBI, SB(SBI),...
What is the conditional? It is called $\mathbf{D}$ for decide.
$\mathbf{D} \equiv[x, y, z] \cdot z(\mathbf{K} y) x$
This has the key property
$\mathbf{D} X Y \overline{0}=X$
$\mathbf{D} X Y \overline{S(n)}=Y \quad$ Can also write $\mathbf{D} X Y \overline{n+1}=Y$
Now we have all we need. See if you can define addition using the idea from primitive recursion.

For the philosophically inclined, how would you define the number 0 , the number 1 , etc. What is the "real meaning"? Is there such a thing? What is it in set theory? What is the computational meaning of 0 ? Of recursion?

