
Equality in Lazy Computation Systems

Vincent Rahli

CS6110 Lecture 6

Monday Feb 2, 2015

This document collects some notes on Doug Howe’s paper “Equality in Lazy
Computation Systems”:

http://nuprl.org/documents/Howe/EqualityinLazy_LICS89.pdf

The goal of that paper is to define a computational equivalence relation ∼
for lazy computation systems that is a (observational) congruence.

A computation system in said to be lazy if its values are terms with canonical
outermost operators. An operator op (or a term with outermost operator op) is
said to be canonical if there is no rule to reduce it further and non-canonical if
there is a rule to reduce it further. For example the λ operator of the λ-calculus
is canonical while the application operator is not. Let’s now add pairs to the
λ-calculus. If our calculus is lazy, 〈a, b〉 is a value whatever a and b are.

Howe’s computational equivalence ∼ is used in Nuprl to prove equalities be-
tween programs (bisimulations) without having to worry about well-typedness.
For example given a term u = C[t] (i.e., the term t occurs in u at a position
given by the context C), if t ∼ t′ then in Nuprl it is possible to rewrite t into
t′ in u to obtain C[t′] without having to prove that C is a well-formed context
over some type (t’s type(s) for example).

Other systems such as Coq, Agda, or Idris are only closed under compu-
tation, meaning that one can only substitute a term for another term if they
compute to the same value (computations preserve types).

In Nuprl, we can prove for example that map(f,map(g, l)) ∼ map(f ◦g, l) for
any f , g, and l. This is useful, among other things, to do program optimization
without having to worry about types.

Howe’s computation equivalence is defined on closed terms as follows: a ∼ b

if a � b ∧ b � a (Definition 3). The relation � (called an approximation or
simulation relation) is coinductively defined as the largest relation R on closed
terms such that R ⊂ [R] (Definition 2), where [·] is the following closure operator
(also defined on closed terms): a [R] b if whenever a computes to a value of the
form θ(t) (where θ is the outermost operator of the term and t its subterms)
then b also computes to a value θ(t′) such that t R t′ (Definition 1).

Because Nuprl supports diverging terms (as opposed to Coq, Agda, and
Idris) such as fix(λx.x) or (λx.xx)(λx.xx) often written as ⊥, one can prove for

1

http://nuprl.org/documents/Howe/EqualityinLazy_LICS89.pdf


example that ⊥ � t, and that for any term t (this trivially follows from �’s
definition).

It now remains to prove that ∼ is a congruence, i.e., that τ(t) ∼ τ(t′)
whenever t ∼ t′. Howe first proves that for �. Unfortunately, it is not easy
to prove directly, e.g., doing a simple codinductive proof. Therefore, Howe
defines another relation �∗ that is a congruence by definition and also contains
� (Definition 4). Howe defines a �∗ b by induction on a: if a is a variable then
a �∗ b if a � b, and if a is of the form τ(t) then a �∗ b if there exists t′ such that
t �∗ t′ and τ(t′) � b. Note that we are now using � on open terms too. Each
relation defined above can be extended to open terms as follows: if a and b are
open terms, then we write a R b, where R is a relation on closed terms, if for all
substitution sub such that a[sub] and b[sub] are closed we have a[sub] R b[sub].

By definition we get that �∗ is a congruence and that it contains �, i.e.,
t ∼ t′ ⇒ τ(t) �∗ τ(t′) and a � b ⇒ a �∗ b. Note that this relation is reflexive
and transitive (not symmetric though). However, it is not easy to prove that it
is transitive (I personally wasted several days trying to prove it using a “direct”
method). By definition, we get that a �∗ b ⇒ b � c ⇒ a �∗ c, which is enough
for what Howe wants to do in the rest of the paper. (One can get that �∗ is
transitive once we have proved that it is equivalent to � but we don’t really
care anymore about �∗ once we have proved that � is a congruence: �∗’s sole
purpose is to prove that.)

to prove that a � b is a congruence, it now remains to prove that a �∗ b ⇒
a � b. If we can prove that then because a � b ⇒ a �∗ b, we get that �∗

and � are equivalent and so � is a congruence. To prove that a �∗ b ⇒ a � b

and because � is defined as the greatest fixpoint of [·], it suffices to prove that
�∗ respects computation, i.e., given that a �∗ b, if a computes to a value of
the form θ(t) then b also computes to a value θ(t′) such that t �∗ t′. Howe
proves that this is true when a is already a value in Lemma 2. He then defines
a condition called extensionality (Definition 5) that non-canonical operators of
lazy computation systems have to satisfy in order for a �∗ b ⇒ a � b and
therefore in order for ∼ to be a congruence. In a nutshell, this extensionality
requirement is roughly the condition used in [·]’s definition.

It is trivial to prove that the operators of the untyped λ-calculus are all
extensional and therefore that ∼ is a congruence. It is fairly easy to prove the
same thing for Nuprl.

Finally, note that the same machinery can be used for non-deterministic
systems too.

2


