Lecture 33

Topics

- 1. PS4 there will be one more problem assigned on Monday. Recall that the main point of Problem 1 is to show why the LCF fixed point induction principle needs an *admissibility* condition. This condition is similar to Winskel's requirement of an inclusive predicate in his account. You can basically use any cpo D to illustrate the issue. I first suggest $\overline{\mathbb{N}}$.
- 2. Finishing the rules for First-Order Logic (FOL) in the style of programming logic. This style is essentially "block structured natural deduction". It has been extensively studied in logic. The other styles are *Hilbert style*, just axioms and simple inference rules (used in Kleene), and the *sequent calculus* or *refinement logic*, as used in Coq and Nuprl respectively.
- 3. Close examination of the program and proof of Gauss's formula, $\sum_{i=0}^{n} = \frac{n \cdot (n+1)}{2}$.
- 4. Introduction to the Loop language, Meyer and Ritchie 1967 technical report from IBM research.

Introduction to the Loop Language, Meyer and Ritchie 1967

Why are Loop programs interesting?

- An upper bound on the $run\ time$ is determined by program structure in a simple way.
- $\,$ They are a $natural\ sublanguage$ of all standard procedural languages.
- They compute precisely the primitive recursive functions.
- One of the simplest rich *subrecursive languages*, so they can give insight into the Blum size theorem.

1

Syntax – register names $X_1, X_2, ..., X_n, ...$

Syntax-instructions

- 1. X = Y
- 2. X = X + 1
- 3. X = 0
- 4. LOOP X P END, where P is a loop program.

Definition: A Loop program P is any sequence of basic instructions (1 to 3) or a loop instruction of type 4 where P is a Loop program.

The semantics of **LOOP** X P **END** is the same as the PL1 program, (see PLCV p.85),

$$\mathbf{do}\ I = X \text{ to 1 by -1}$$

$$P$$

end.

If the program P terminates, which it will, it is executed exactly X times P(X), P(X-1), P(X-2), ..., P(1).

For example **LOOP** (X = X + 1) **END** computes $2 \cdot X$ in $2 \cdot X + 2$ steps.

Sometimes we write X := X + 1, X := 0 for the assignments so that X = 0 etc., can be read as assertions.

Program	State (with assertions about X)
X := 0	X = 0
X := X + 1	X = 1
X := X + 1	X=2
LOOP X	
X := 1	X = 4
\mathbf{END}	

Reading: Please read Meyer & Ritchie pages 1-6 and 12-13.

Properties of Loop programs

Definition of L_n

 L_0 no loops

 L_n loops nested to depth n.

Definition 2.1. $Loop = \bigcup_{n=0}^{\infty} L_n$, page 2.

Definition 3.1. Iterating $g - h(z, y) = g^{(y)}(z)$

Definition 3.2. Bounding functions f_n

$$f_0(0) = 1$$
 $f_0(1) = 2$ $f_0(x) = x + 2$ for $x > 1$.
 $f_{n+1}(x) = f_n^{(x)}(1)$

Bounding Theorem 3.3. If $P \in L_n$, then we can find p > 0 such that $f_n^{(p)}$ bounds the running time of P.