Advanced Progamming Languages Lecture 32
CS 6110 Spring 2015 Wed. April 15, 2015

Lecture 32

Topics

1. The Programming Logic idea is alive and well as Sarah Loos mentioned in discussing
courses using key based programming logic — built on Java. F* and Lean might be
another example, Idris and Haskell.

2. PS4 question on inclusive predicates.

3. Integrating programming and logic is a very rich idea, but you need to bet on a pro-
gramming language.

4. We will look at the Loop language of Meyer & Ritchie.
5. PLCV examples continued, page 86, SQ: PROCEUDRE(N, SUM)

Fixed Point Induction

= WL /f] WEWE)/f
= WI[Fix(F)/f]
W admits ind.

D is a cpo with L.

F': D — D is continuous.

P is inclusive iff for all w-chains dy C d; C ... € D if d,, € P for all n : N, then | | d,, the lub
of d;, is in P. "

PS4 problem variations

Find a non-inclusive predicate over (N — N) — (N — N) where L= (f(z) =1). f C g iff
f(z) C g(x) for all z.

We get function chians from starting with

fo= f(x) =L for all z.
firi=F(f;) fo=|]/fn, the least upper bound of f,.

86

01 SQ: PROCEDURE(N, SUM);

02 DECLARE N FIXED /*/ READONLY */3
03 DECLARE SUM FIXED:

04 /*/ ASSUME N >= 13

05 ATTAIN 2%SUM = N % (N+1):

06 %/

06 DECLARE I FIXED;

07 /*/ 2%0 = (1-1)*1;

08 ~(1>N) BY ARITH, N>=1; =*/
09

10 SUM = 03

11

12 /x/ 2%SUM = (1-1)*13 */
13 DOI =1 TO N BY 1;

14 /*/ ASSUME P: 2%SUM = (I-1)%I;:

15 2%(SUM+I) = I*(I+1) BY ARITH, P, +, 2%I=2%L; */
16

17 SUM = SUM + I;

18

19 [%/ 2 %« SUM = I % (I+1):

20 2 % SUM = (I+1-1) * (I+1)s */
21 ENDg

22 /%[2%xSUM = (N+1-1) * (N+1)3 =/

23 RETURN:

24 END SQ:

Figure 19 Computing sum of the first N integers

the loop body is executed. Thus, after the loop is finished executing,
P{F+1//1} will be true.

The assumption is made in the above discussion that the loop body is exe-
cuted. When S>F, the loop body is not executed at all. In that case, the
assertion we will conclude after the execution of the loop had better be
true right away. Thus, we are obliged to prove S>F => P{F+1//I} before the
execution of the loop. Often we know that the loop body will be executed
at least once. In that case, we can prove ~(S>F), and the implication we
need to prove. is vacuously true, and will follow from automatic rules.

Let us see how all of this works in a simple example, Figure 19 contains a
program that uses a DO INDEX statement to compute the sum of the first N
integers. That is, the program sets S =1 + 2 + ... N. It is a fact of
algebra that the sum of the first N integers is (N#x(N+1))/2, Let us see how
we can use the DO INDEX rule to prove this fact. (We use the ATTAIN

2*8UM = N * (N+1) rather than SUM = (N*(N+1))/2 to avoid the complexities
of reasoning about division.)

The first thing to get out of the way is to show that the loop works prop-

erly if the body is not executed. We don't have to worry about that prob- -

lem in this example, since we are assuming that N >= 1 on line 04, Thus,
line 08 takes care of the S>F => P{F+1//1} part of the template.

—

— ey

21

is indicated by horizontal and vertical dots as with the equality tem~
plates. The only difference is that when a group of templates has the same
bypothesis, as in the MOD templates, the hypothesis appears in the template
only once. It should be understood that whenever you use any of the three
¥0D templates, that the hypothesis ~(J = 0) should be the conclusion of a
previous proof line. (Note: although the given rules completely character-
ize the division functiom, there are many 2dditional useful conclusions
vhich may be asserted without laboriously deriving them from these rules.
See section 4.12 for the full division template.)

Logical Conmmectives

The operators &, |, =>, <=>, ~, and the quantifiers are called the "logical
comnectives.” For each logical comnective, there is an ®introduction rule”
ad an "elimination rule." The introduction rule for a commective will
bave an assertion using that comnective as a conclusion, Conversely, the

elimination yule for a commective will have an assertion using that connec-
tive as a hypothesis.

Here are the templates for some of the simpler introduction and elimination
rules,

& intro & elim & elim | intro | intreo => elim

- . P&qQ ... P& Q sas P oooe Q oo N

Q soa e o ° ° P => Q oo
. Ps Q; Pl Q: ?1Qs o

P &Q; Qs

<=> intro <=> elim <=> elim

P=>Q se0 P ==> 0 .es P <=>Q o0s

Q => P eee L3 @

o P =>Q; Q => P;

P <=> Q3

The templates given above are for the two-place & and |, but there are also
templates for operators with three or more operands. Recall that & and |
ire combining operators, meaning, for example that P & Q & R means neither
(P&Q) &Rnor P & (Q & R), The elimination rule allows you to "pull

avay® any nwmber of combimed & operators in ome step. Thus, if you have
established P & Q & R, you may conclude either P, Q, or R by & elimination.
Civen (P & Q) & R, you would need two steps to conclude P; you wonld first
have to prove P & Q. The introduction rules work in 2 similar fashiom. If
you establish P, you can then prove P | Q | R in onme introductiom, but to
prove (P | Q) | R, you would first have to prove P | Q.

<=> RULES _

The special rules we had for the "=" operator reflected the fact that. as
an assertion, X=Y meant that the FIXED or BIT expressions X and Y had the
same value, and could therefore be substituted for each other in an asser-
tion P, subject to certain restrictions about bound variables which insured

