
Advanced Progamming Languages Lecture 30
CS 6110 Spring 2015 Fri. April 10, 2015

Lecture 30

Topics

1. PS4 corrections

– The 3x + 1 (Collatz) function is

f(x) = if x = 1 then 0 else if even(x) then f(x/2) else f(3x + 1).

– Explain why the sentence on p.172 of Winskel hints at LCF failure.

– Don’t cite Coq Auto as an explanation. Abhishek and I have noted some inter-
esting sociology around using Coq proofs – something to ponder. We are seeing
advanced AI at work in unexplained ways. Can proof assistants get a “personal-
ity”?

2. Read Winskel, first part of Chapter 5, p.55-68, and Chapter 6.

The structured operational semantics is very precise and elementary. It simply presents a
format for computation rules. The rules are readable and suitable for implementation. This
approach is the foundations of functional languages as well. Indeed, once we have been
precise in this way for functional languages, we can use them to give what is called a deno-
tational semantics for imperative (or aka “procedural”) languages. Here is how.

Denotational Semantics for IMP

Winskel Style – Chapter 5 Lecture style – partial functions

A : Aexp → (Σ → N) JaexpK : states → N
B : Bexp → (Σ → N) JexpK : states → B
C : Cmd → (Σ → Σ) JcmdK : states → states

See Winskel pages 56-58

We only look at commands in lecture.

JskipK(s) = s

JX := aexpK(s) = s[JaexpK(s)/X]

Jif bexp then C0 else C1 fiK(s) = if JbexpK(s) then JC0K(s) else JC1K(s)

Jwhile bexp do C odK(s) = if JbexpK(s) then Jwhile bexp do C odK(JCK(s)) else s

1

