
Advanced Progamming Languages Lecture 28
CS 6110 Spring 2015 Mon. April 6, 2015

Lecture 28

Topics

1. Remainder of the course – a dozen standard lectures left because of Charter Day on
Monday April 27, and a lecture for final exam review from Abhishek and Mark Bickford.

2. Some lectures are to suggest to you that there is an opportunity for enduring deep
contributions to programming languages and type theory, steps toward the “next big
thing”. What might it be? It’s good to look at history and ties between PL and other
areas – Theory A, AI (automated reasoning, NLP, machine learning (MUSE), cyber
physical systems (HACMS), distributed computing (CRASH)).

Historical Notes – already mentioned and yet to come:

Lisp – 1962 higher-order functions as objects, reflection and self modification
Algol 60 – types
Algol W, Pascal – types
PL1
Java, C++, C#

The ML Family:
Classic ML
Standard ML
OCaml

Haskell
F#

——Speculation——
Coq PL, F*, dependent types
EventML (functional processes)

3. The Blum Size Theorem

4. Start imperative programming languages – Winskel

The Blum Size Theorem Continued

Recall that we frame these results in terms of acceptable indexings of the partial recursive
functions on N. We let ϕi be such an indexing.

Rogers shows that two such indexings, ϕi and ψi are recursively isomorphic, i.e. there is a
1 - 1 onto recursive function f : N→ N such that ϕf(i) = ψi.

1

Blum uses this result to show that two size measures are “closely related” – his Proposition
1 and Propostion 2.

His main theorem on size has already been stated. We now look more closely at the
proof.

Blum Size Theorem (Theorem 1 p.259)

0. Let | | be any size measure.

1. Let g be any (total) recursive function with unbounded range which enumerates indexes
in an acceptable indexing – think of enumerating the smallest of the primitive recursive
programs, but it could be a subset of the partial recursive functions.

2. Let f be any total recursive function used to measure the difference in magnitude,
think of fast growing monotonic functions such as k · x or k1 · xx

2
, etc.

Then we can effectively find numbers i, j uniformly in f, g (i.e. constructively, given
the programs f and g), such that:

3. ϕi = ϕg(j) and

4. f |i| < |g(j)| (ϕi is “smaller than” g(j))

Exercise: Show that we can enumerate the smallest primitive recursive programs, for length
measure. Can it be done for any measure?

Blum Size Theorem Proof

We define a procedure for effectively finding the two integers i and j give the indexes (pro-
grams) for total recursive functions f and g.

Define a partial recursive function by the following program:

begin

With natural number inputs x, y and given programs f and g

1. compute f |y|.

2. then while |g(j)| ≤ f |y| starting at j = 0, increase j.

Eventually we will find the least j such that f |y| < |g(j)|, call it j0.

output ϕg(j0)(x).

end

These instructions define ϕz(x, y), and we can determine the index z.

The recursion theoreom of Kleene in the strong form guarantees that we can find an integer
i such that ϕi(x) = ϕz(x, i)

2

First we find i constructively (uniformly), as above. Then compute f |i| and compute
|g(0)|, |g(1)|, ... until f |y| < |g(j)| at j0, then we have ϕi(x) = ϕz(x, i) = ϕg(j0)(x). �

Consider the following imperative code for a bst function from N×N to N with size measuere
| |.

bst(x : N, y : N) : N =

begin

j : N

j := 0

while |g(j)| ≤ f(|y|) do

j := j + 1

od

f(|y|) < |g(j)|

j0 := j

output (ϕg(j0)(x))

end bst

Call this program ϕz(x, y).

Why is there a z index for this program?

By the recursion theorem, we can find a natural number i0 such that ϕi0(x) = ϕz(x, i0)

We have: ϕi0(x) = ϕz(x, i0) = ϕg(j0)(x).

3

