
Advanced Progamming Languages Lecture 27
CS 6110 Spring 2015 Fri. March 27, 2015

Lecture 27

Topics

1. Discuss aspirations for planned lessons on type theory.

We are seeing issues that arise for a comprehensive theory of computing that can be a
foundation for computer science and mathematics.

Here is one of them: computation in type theory is key for computer science – but
subrecursive or total (Coq PL vs Nuprl PL)?

Can there be a PL for Herbrand/Gödel - “all total computable functions”?

Some proof assistants don’t incorporate computation – HOL.

Some don’t use types – ACL2.

2. Rice’s Theorem

à la Rogers (lecture notes)

à la CBRFT (proof in Computational foundations of basic recursive function theory)

3. Blum Size Thoerem

Issues- why can’t R, the Herbrand-Gödel recursive functions, be a PL like Coq PL?

Rice’s Theorem – two proofs, one for N from Rogers, one from Computational foundations
of basic recursive function theory for T .

(i) Roger’s version

Let C be a collection of partial recursive functions of one variable, ϕi : N → N. Let
{i : N |ϕi ∈ C} be the indices of C. C has a recursive characteristic function, say
chC : N→ B, if and only if C is either empty or full (all of N→ N).

Proof : If C is empty, use λx.false (the constant function returning false). If C is
full use λx.true, the constant function returning true.

Suppose chC is the recursive characteristic function. We show that it must be a con-
stant. So suppose it’s non-constant. Thus chC(i) is true on some values and false on
others. Let ϕd be the everywhere diverging function, λx. ⊥.

We will use chC to solve the halting problem does ϕi(i) halt, i.e. ϕi(i) ↓ ? which we
previously proved is unsolvable.

1

First, see where ϕd resides, using chC(d). To solve the halting of ϕi(i), use the function
λx.ϕi(i); ϕc(x) where ϕc(x) converges for some x, and chC(c) 6= chC(d). Recall that
λx.ϕi(i); ϕc(x) first computes ϕi(i) and then sequences to ϕc(x) if ϕi(i) ↓. Call this
function ϕd(i).

We have

{
ϕi(i) ↑ iff chC(d(i)) = 1

ϕi(i) ↓ iff chC(d(i)) = 0.

�

(ii) CBRFT Version, Theorem 3.10

For all types T , CT is decidable iff CT is trivial, either empty or full.

Proof :

1. (⇐ Case)

Use λx.0 for empty, λx.1 for full. Recall, we use the numeral 2 for the Booleans.

2. (⇒ Case)

If CT is decidable, we can use the function f : T → 2 to decide whether
(a) f(⊥) = 0 or (b) f(⊥) = 1

In case (a), we show that CT is empty.

In case (b), we show that CT is full.

Case (a). f(⊥) = 0.

Show ∀t : T .f(t) = 0. Let t ∈ T be arbitrary. We show f(t) = 0 by
contradiction because equality on 2 (Bool) is decidable.

Assume f(t) 6= 0. We show that div kT is decidable, using the function
h = λx.f((x; t)) in T → 2.

To show div kT is decidable, show h(x) = 0 iff x ↑.

(⇒) h(x) = 0 implies f((x; t)) = 0, if x ↓ then f((x; t)) = f(t) = 0, but we
assumed f(t) 6= 0. Hence x ↑.

(⇐) If x ↑ then f((x; t)) = f(⊥) = 0 by case (a) assumption.

So h decides divergence, contrary to Theorem 3.5.

Case (b). f(⊥) = 1

Exercise for PS4: Finish this case of the proof.
Optional Exerscie: Can you prove Rice’s Theorem for CT→T in CBFRT?

2

Blum Size Theorem

Definition. ϕi is an acceptable indexing ϕ : N→ (N→ N) iff it satisfies:

(i) the Universal Machine Theorem, ∃ um : (N× N→ N).

um(i, x) = ϕi(x)

(ii) the S-m-n theorem, we can find a recursive function s such that
ϕ2
i (x, y) = ϕs(i,x)(y), for all i, x, y.

Theorem (Rogers): If ϕi and ψi are acceptable indexings, then one is a recursive permuta-
tion of the other, e.g. there is a recursive f : N→ N, ϕf(i) = ψi for all i.

Definition: a recursive function s is a size function iff

(i) There are a finite number of machines of any given size.

(ii) We can compute the size of a machine.

Theorem (Blum Size Theorem). Let g be any recursive function with unbounded range
and let f be any recursive function. We can find indices i, j ∈ N such that ϕi = ϕg(i) and
f(|i|) < |g(j)|, that is, the size of ϕi is considerably smaller than the size of ϕg(i) although
they compute the same function.

Application – If g enumerates the programs of primitive recursive functions (or Coq PL func-
tions), then a general recursive function ϕi for the same function is considerably smaller.

How could this result possibly be true? The proof is almost magical, using the (strong)
recursion theorem of Kleene (proof in attached notes from Roger’s).

The basic idea is that we can establish a size constraint as part of a general recursive
definition for a fixed enumerable sequence of functions known to be total and then take a
fixed point.

Optional exercise for PS4: Give an intuitive account of this result as best you can.

3

