Lecture 27

Topics

1. Discuss aspirations for planned lessons on type theory.

We are seeing issues that arise for a comprehensive theory of computing that can be a foundation for computer science and mathematics.

Here is one of them: computation in type theory is key for computer science - but subrecursive or total (Coq PL vs Nuprl PL)?

Can there be a PL for Herbrand/Gödel - "all total computable functions"?
Some proof assistants don't incorporate computation - HOL.
Some don't use types - ACL2.
2. Rice's Theorem
à la Rogers (lecture notes)
à la CBRFT (proof in Computational foundations of basic recursive function theory)
3. Blum Size Thoerem

Issues- why can't \mathcal{R}, the Herbrand-Gödel recursive functions, be a PL like Coq PL?

Rice's Theorem - two proofs, one for \mathbb{N} from Rogers, one from Computational foundations of basic recursive function theory for \bar{T}.
(i) Roger's version

Let \mathcal{C} be a collection of partial recursive functions of one variable, $\varphi_{i}: \overline{\mathbb{N}} \rightarrow \overline{\mathbb{N}}$. Let $\left\{i: \mathbb{N} \mid \varphi_{i} \in \mathcal{C}\right\}$ be the indices of \mathcal{C}. \mathcal{C} has a recursive characteristic function, say $c_{\mathcal{C}}: \mathbb{N} \rightarrow \mathbb{B}$, if and only if \mathcal{C} is either empty or full (all of $\overline{\mathbb{N}} \rightarrow \overline{\mathbb{N}}$).

Proof: If \mathcal{C} is empty, use λx.false (the constant function returning false). If \mathcal{C} is full use λx.true, the constant function returning true.

Suppose $c h_{\mathcal{C}}$ is the recursive characteristic function. We show that it must be a constant. So suppose it's non-constant. Thus $c h_{\mathcal{C}}(i)$ is true on some values and false on others. Let φ_{d} be the everywhere diverging function, $\lambda x . \perp$.
We will use $c h_{\mathcal{C}}$ to solve the halting problem does $\varphi_{i}(i)$ halt, i.e. $\varphi_{i}(i) \downarrow$? which we previously proved is unsolvable.

First, see where φ_{d} resides, using $c h_{\mathcal{C}}(d)$. To solve the halting of $\varphi_{i}(i)$, use the function $\lambda x . \varphi_{i}(i) ; \varphi_{c}(x)$ where $\varphi_{c}(x)$ converges for some x, and $c h_{\mathcal{C}}(c) \neq c h_{\mathcal{C}}(d)$. Recall that $\lambda x . \varphi_{i}(i) ; \varphi_{c}(x)$ first computes $\varphi_{i}(i)$ and then sequences to $\varphi_{c}(x)$ if $\varphi_{i}(i) \downarrow$. Call this function $\varphi_{d(i)}$.

We have $\left\{\begin{array}{l}\varphi_{i}(i) \uparrow \text { iff } c h_{\mathcal{C}}(d(i))=1 \\ \varphi_{i}(i) \downarrow \text { iff } c h_{\mathcal{C}}(d(i))=0 .\end{array}\right.$
(ii) CBRFT Version, Theorem 3.10

For all types $T, C_{\bar{T}}$ is decidable iff $C_{\bar{T}}$ is trivial, either empty or full.

Proof:

1. $(\Leftarrow$ Case $)$

Use $\lambda x .0$ for empty, $\lambda x .1$ for full. Recall, we use the numeral 2 for the Booleans.
2. (\Rightarrow Case)

If $C_{\bar{T}}$ is decidable, we can use the function $f: \bar{T} \rightarrow \mathbf{2}$ to decide whether
(a) $f(\perp)=0$ or (b) $f(\perp)=1$

In case (a), we show that $C_{\bar{T}}$ is empty.
In case (b), we show that $C_{\bar{T}}$ is full.
$\underline{\text { Case (a). }} f(\perp)=0$.
Show $\forall t: \bar{T} . f(t)=0$. Let $t \in \bar{T}$ be arbitrary. We show $f(t)=0$ by contradiction because equality on $2(\mathrm{Bool})$ is decidable.

Assume $f(t) \neq 0$. We show that div $k_{\bar{T}}$ is decidable, using the function $h=\lambda x . f((x ; t))$ in $\bar{T} \rightarrow \mathbf{2}$.

To show div $k_{\bar{T}}$ is decidable, show $h(x)=0$ iff $x \uparrow$.
$(\Rightarrow) h(x)=0$ implies $f((x ; t))=0$, if $x \downarrow$ then $f((x ; t))=f(t)=0$, but we assumed $f(t) \neq 0$. Hence $x \uparrow$.
(\Leftarrow) If $x \uparrow$ then $f((x ; t))=f(\perp)=0$ by case (a) assumption.
So h decides divergence, contrary to Theorem 3.5.
$\underline{\text { Case (b). }} f(\perp)=1$
Exercise for PS4: Finish this case of the proof.
Optional Exerscie: Can you prove Rice's Theorem for $C_{\bar{T} \rightarrow \bar{T}}$ in CBFRT?

Blum Size Theorem

Definition. φ_{i} is an acceptable indexing $\varphi: \mathbb{N} \rightarrow(\overline{\mathbb{N}} \rightarrow \overline{\mathbb{N}})$ iff it satisfies:
(i) the Universal Machine Theorem, $\exists u m:(\mathbb{N} \times \mathbb{N} \rightarrow \overline{\mathbb{N}})$.

$$
u m(i, x)=\varphi_{i}(x)
$$

(ii) the S-m-n theorem, we can find a recursive function s such that $\varphi_{i}^{2}(x, y)=\varphi_{s(i, x)}(y)$, for all i, x, y.

Theorem (Rogers): If φ_{i} and ψ_{i} are acceptable indexings, then one is a recursive permutation of the other, e.g. there is a recursive $f: \mathbb{N} \rightarrow \mathbb{N}, \varphi_{f(i)}=\psi_{i}$ for all i.

Definition: a recursive function s is a size function iff
(i) There are a finite number of machines of any given size.
(ii) We can compute the size of a machine.

Theorem (Blum Size Theorem). Let g be any recursive function with unbounded range and let f be any recursive function. We can find indices $i, j \in \mathbb{N}$ such that $\varphi_{i}=\varphi_{g(i)}$ and $f(|i|)<|g(j)|$, that is, the size of φ_{i} is considerably smaller than the size of $\varphi_{g(i)}$ although they compute the same function.

Application - If g enumerates the programs of primitive recursive functions (or Coq PL functions), then a general recursive function φ_{i} for the same function is considerably smaller.
How could this result possibly be true? The proof is almost magical, using the (strong) recursion theorem of Kleene (proof in attached notes from Roger's).

The basic idea is that we can establish a size constraint as part of a general recursive definition for a fixed enumerable sequence of functions known to be total and then take a fixed point.

Optional exercise for PS4: Give an intuitive account of this result as best you can.

