Lecture 27

Topics

1. Discuss aspirations for planned lessons on type theory.

We are seeing issues that arise for a *comprehensive theory of computing* that can be a foundation for computer science and mathematics.

Here is one of them: computation in type theory is key for computer science – but subrecursive or total (Coq PL vs Nuprl PL)?

Can there be a PL for Herbrand/Gödel - "all total computable functions"?

Some proof assistants don't incorporate computation – HOL.

Some don't use types – ACL2.

2. Rice's Theorem

 $\dot{a} \ la \ Rogers \ (lecture \ notes)$

à la CBRFT (proof in Computational foundations of basic recursive function theory)

3. Blum Size Thoerem

Issues- why can't \mathcal{R} , the Herbrand-Gödel recursive functions, be a PL like Coq PL?

Rice's Theorem – two proofs, one for \mathbb{N} from Rogers, one from *Computational foundations* of basic recursive function theory for \overline{T} .

(i) Roger's version

Let \mathcal{C} be a collection of partial recursive functions of one variable, $\varphi_i : \overline{\mathbb{N}} \to \overline{\mathbb{N}}$. Let $\{i : \mathbb{N} | \varphi_i \in \mathcal{C}\}$ be the indices of \mathcal{C} . \mathcal{C} has a recursive characteristic function, say $ch_{\mathcal{C}} : \mathbb{N} \to \mathbb{B}$, if and only if \mathcal{C} is either empty or full (all of $\overline{\mathbb{N}} \to \overline{\mathbb{N}}$).

Proof: If C is empty, use $\lambda x. false$ (the constant function returning false). If C is full use $\lambda x. true$, the constant function returning true.

Suppose $ch_{\mathcal{C}}$ is the recursive characteristic function. We show that it must be a constant. So suppose it's non-constant. Thus $ch_{\mathcal{C}}(i)$ is true on some values and false on others. Let φ_d be the everywhere diverging function, λx . \perp .

We will use $ch_{\mathcal{C}}$ to solve the halting problem does $\varphi_i(i)$ halt, i.e. $\varphi_i(i) \downarrow ?$ which we previously proved is unsolvable.

First, see where φ_d resides, using $ch_{\mathcal{C}}(d)$. To solve the halting of $\varphi_i(i)$, use the function $\lambda x.\varphi_i(i)$; $\varphi_c(x)$ where $\varphi_c(x)$ converges for some x, and $ch_{\mathcal{C}}(c) \neq ch_{\mathcal{C}}(d)$. Recall that $\lambda x.\varphi_i(i)$; $\varphi_c(x)$ first computes $\varphi_i(i)$ and then sequences to $\varphi_c(x)$ if $\varphi_i(i) \downarrow$. Call this function $\varphi_{d(i)}$.

We have
$$\begin{cases} \varphi_i(i) \uparrow & \text{iff } ch_{\mathcal{C}}(d(i)) = 1\\ \varphi_i(i) \downarrow & \text{iff } ch_{\mathcal{C}}(d(i)) = 0. \end{cases}$$

(*ii*) **CBRFT Version**, Theorem 3.10

For all types $T, C_{\overline{T}}$ is decidable iff $C_{\overline{T}}$ is trivial, either empty or full.

Proof:

1. (\Leftarrow Case)

Use $\lambda x.0$ for empty, $\lambda x.1$ for full. Recall, we use the numeral **2** for the Booleans.

2. (\Rightarrow Case)

If $C_{\overline{T}}$ is decidable, we can use the function $f:\overline{T}\to \mathbf{2}$ to decide whether (a) $f(\perp) = 0$ or (b) $f(\perp) = 1$

In case (a), we show that $C_{\overline{T}}$ is empty.

In case (b), we show that $C_{\overline{T}}$ is full.

Case (a). $f(\perp) = 0$.

Show $\forall t : \overline{T} f(t) = 0$. Let $t \in \overline{T}$ be arbitrary. We show f(t) = 0 by contradiction because equality on **2** (Bool) is decidable.

Assume $f(t) \neq 0$. We show that $div k_{\overline{T}}$ is decidable, using the function $h = \lambda x.f((x;t))$ in $\overline{T} \to \mathbf{2}$.

To show $div k_{\overline{T}}$ is decidable, show h(x) = 0 iff $x \uparrow$.

 (\Rightarrow) h(x) = 0 implies f((x;t)) = 0, if $x \downarrow$ then f((x;t)) = f(t) = 0, but we assumed $f(t) \neq 0$. Hence $x \uparrow$.

(⇐) If $x \uparrow$ then $f((x;t)) = f(\bot) = 0$ by case (a) assumption.

So h decides divergence, contrary to Theorem 3.5.

Case (b). $f(\perp) = 1$

Exercise for PS4: Finish this case of the proof. Optional Exercise: Can you prove Rice's Theorem for $C_{\overline{T}\to\overline{T}}$ in CBFRT?

Blum Size Theorem

Definition. φ_i is an acceptable indexing $\varphi : \mathbb{N} \to (\overline{\mathbb{N}} \to \overline{\mathbb{N}})$ iff it satisfies:

- (i) the Universal Machine Theorem, $\exists um : (\mathbb{N} \times \mathbb{N} \to \overline{\mathbb{N}}).$ $um(i, x) = \varphi_i(x)$
- (*ii*) the S-m-n theorem, we can find a recursive function s such that $\varphi_i^2(x, y) = \varphi_{s(i,x)}(y)$, for all i, x, y.

Theorem (Rogers): If φ_i and ψ_i are acceptable indexings, then one is a recursive permutation of the other, e.g. there is a recursive $f : \mathbb{N} \to \mathbb{N}, \ \varphi_{f(i)} = \psi_i$ for all i.

Definition: a recursive function s is a *size function* iff

- (i) There are a finite number of machines of any given size.
- (*ii*) We can compute the size of a machine.

Theorem (Blum Size Theorem). Let g be any recursive function with unbounded range and let f be any recursive function. We can find indices $i, j \in \mathbb{N}$ such that $\varphi_i = \varphi_{g(i)}$ and f(|i|) < |g(j)|, that is, the size of φ_i is considerably smaller than the size of $\varphi_{g(i)}$ although they compute the same function.

Application – If g enumerates the programs of primitive recursive functions (or Coq PL functions), then a general recursive function φ_i for the same function is considerably smaller.

How could this result possibly be true? The proof is almost magical, using the (strong) *recursion theorem* of Kleene (proof in attached notes from Roger's).

The basic idea is that we can establish a size constraint as part of a general recursive definition for a fixed enumerable sequence of functions known to be total and then take a fixed point.

Optional exercise for PS4: Give an intuitive account of this result as best you can.