
Advanced Progamming Languages Lecture 25
CS 6110 Spring 2015 Mon. March 23, 2015

Lecture 25

Topics

1. Overview.

2. λ-decidability is limited by halting problem argument.

3. Unsolvability can be expressed using partial types.

4. Elements of Basic Recursive Function Theory (BRFT) in type theory with partial
types.

1. Overview

We have briefly studied some elements of a theory of partial recursive functions over the
type N→ N. This led us to have an intuitive and informal account of partial functions
on N and “partial objects” more generally. We formulated Kleene’s Recursion Theorem
in this setting and looked at two ways to prove it.

(i) Highly general account using well orderings on sets with special elements ⊥ rep-
resenting diverging elements and monotone functions with respect to a v b on
these ordered sets.

(i i) Computational accounts1

(a) Kleene’s proof of his recursion theorem.

(b) The Manna account of domains with a bottom element, the v order relation,
and continuous function.

Optional exercise: Do Kleene “computations” for ASMs. Study his proof.

We saw how Edinburgh LCF formalized an account of general domains, centered on
fixed-point induction. We note two issues with this principle.

(a) The admissibility criteria for fixed-point induction are weak.

(b) The extensions of arithmetic operations from N to N is not entirely obvious. For
example, consider 0 ∗ ⊥= ?, ⊥ ∗ 0/0 = ?, ⊥ /0 = ?.

1But Kleene’s computational account in terms of equations is not as “intuitive” as on ASMs.

1



When we get to type theory, we will see how the fixed point induction issue was clarified
by Cornell PhD students, and how the principles of “domain extension” were clarified
in general theory of partial types.

In this lecture we explore the topic of partial types further by looking at a computability
theory over N developed by Scott Smith and me. Later I will show how Crary extended
this theory to clarify fixed point induction and how Abhishek Anand advanced issue
(b), the general theory of domain extension and computational domain theory.

Crary: A type is admissible (for induction) iff f ∈ (T → T )⇒ fix(f) ∈ T

Fact: There exist inadmissible types. Optional exercise – find one.

Least Upper Bound Theorem (Crary 1998) For all f, t, e (where f is closed),
∀j : N.e(f j/x) ≤ t⇒ e(fix(f)/x) ≤ t.

This allows Crary to identify a large class of admissible types. He built on Howe’s
equality. The progression was:

Park 1970 Machine Intelligence Milner/Park et al, fixed point induction
Scott 1972 Smith 1989
Igarashi 1972 Smith 1989
The Semantics of Pascal in LCF,
L.Aiello, M. Aiello, R. W. Weyrauch,
Stanford, 1974

Anand

Crary Definition:

(a) A type A is admissible if the upper bound t(fix(f)) of an approximation chain
t(f 0), t(f 1), ..., f(fn), ... belongs to A whenever a cofinite subsequence of the chain
belongs to A.

(b) A type T is predicate-admissible, T [e[k]] ⇒ T [e[ω]] for all k greater than some j.
This is the idea from domain theory, like Igarashi 1972.

2. Our λ-calculus theory gives us a weak form of the Halting Problem. This is explained in
computer science where we introduce unsolvability and elements of recursive function
theory in terms of a single theory of partial types.

Computational Foundations of Baasic Recursive Function Theory, Theoretical Com-
puter Science, v.121, 1993, 89-112.

Theorem There is no λ-definable total function to decide halting in the untyped λ-
calculus (p.91).

Proof : Suppose h existed, say h(x) = 1 if x ↓ and h(x) = 0 if x ↑. Define d =
Y (λx.h(x) = 1 then Ω else 0). Note Y (d) = d(y(d)), and d = h(d) = 1 then ↑ else 0.

Now consider how d executes.

2



If h(d) = 1 then d diverges, contradicting the definition of h. So we must have h(d) = 0.
But in this case, the behavior also contradicts the definition of h.

Hence, there is no such h.

Note, the reasoning is constructive, we do not say (h(d) = 0) ∨ (h(d) = 1) based on
logic, but on the definition of h.

�

3. Constructive PCF (or PCF or LCF).

The article is posted with this lecture, referring to section 2 of the paper:

2. A theory of computing (ATC) (A Theory of Partial Computing – TPC)

2.1 Nature of the theory

Do not adopt Church’s Thesis.
Use types T and partial types T

(Would not necessarily talk about computations as objects, just use computation
rules that can generate unbounded reductions.)

2.2 Possible interpretations.

2.3 Syntax – terms

Numbers 0,1,2...

Abstraction λx.t

Application f(a), we use s(t)

Sequentialization s; t do s, then t

succ(r) – successor, S(n)

pred(r) – predecessor, pred(n), pred(0) is 0

zero(r; s; t)

fix(f)

Syntax – types

N (S → T )
1 (Unit) S (Where S is a bar type)
2 (Bool)

2.4 The theory

The meaning of types – need to define T before T , s = t ∈ T and t ∈ T as
t = t ∈ T . We use t = t′ in T rather than t ' t′ in T .
t ↓ for t converges and t ↑ for t diverges.

Axioms

3



λ-intro

λ-elim (application)

Partial equality (bar intro)

Bar elim, t ∈ T and t ↓ then t ∈ T

4


