
Advanced Progamming Languages Lecture 24
CS 6110 Spring 2015 Fri. March 20, 2015

Lecture 24

Topics

1. Review of least fixed points – classical proof and Kleene’s constructive proof. The
computational significance.

2. Applications of a generalized recursion theorem to Edinburgh LCF 1979 grounded in
Dana Scott’s 1972 paper on fixed point induction and lattice theoretic models of type
free logics.

3. Issues in reasoning about partial computable functions, experience with Edinburgh
LCF and programming logics.

4. Discussion of Voevodsky’s Cornell lecture and his C-systems.

Recall the definition of x v y for x, y : N and f v g for f, g : N→ N, f(x) v g(x) for x : N.
Note ⊥v n for n ∈ N.

We say that f : N→ N is monotonic iff x v y ⇒ f(x) v f(y).

A functional F : (N→ N)→ (N→ N) is:

(a) Monotonic iff f v g ⇒ F (f) v F (g).

(b) Continuous iff for any chain of partial functions f1 v f2 v ... v fi, F (lub fi) =
lub F (fi) where lub fi is the least g ∈ N→ N such that fi(x) v g(x) for all x : N

Theorem Every partial recursive functional F : (N→ N)→ (N→ N) is continuous.

This is part of Kleene’s recursion theorem, the part that is hardest to tease out because of
his equational model for general recursive computation. It is easier to see with the lambda
calculus.

Theorem (Kleene generalized recursion theorem with explicit continuity, Manna’s version)
Given any continuous computable function F : (D → D) → (D → D), we can find a least
fixed point fω such that F (fω) ' fω. In fact, fω = lub F i(⊥) where ⊥ is the completely
undefined function on D → D.

1



Kleene’s Generalized Recursion Theorem à la domain theory, Proof:

1. Define the chain F (ϕ0) = ϕ1, F (ϕ1) = ϕ2, ..., F (ϕi) = ϕi+1 where ϕ0(x) =⊥ for all x.
We called this ϕ0, ϕ1, ϕ2, ..., ϕω, i.e. lubϕi = ϕω.

2. Since F is continuous we can show that ϕω is a fixed point, F (ϕω) = ϕω.

F (ϕω) = F (lub ϕi), i = 0, 1, 2, ...

3. For any fixed point ψ of F , F (ψ), ϕω v ψ.

(a) F i(ϕ0) v ψ for all i by induction on i.

F 0(ϕ0) = ϕ0 v ψ and if F i−1(ϕ0) v ψ then since F is monotonic

F i(ϕ0) = F (F i−1(ϕ0)) = F (ψ) = ψ.

So F i(ϕ0) v ψ for all i, and thus ψ is an upper bound. But ϕω is the lub of
F i(ϕ0) thus ϕω v ψ.

�

The Edinburgh LCF system was an implementation of Dana Scott’s classical logic of com-
putable functions based on domain theorey. This theory did not “catch on”. We have
generalized and improved it as part of constructive type theory, CTT, implemented by the
Nuprl proof assitant.

We will look at the LCF fixed point induction rule.

H1, H2 ` A(fix(f)/x)
H1 ` A(⊥ /x)

H2, x : D → D, A(x) ` A(f(x))

Conditions:

1. No x in H2

2. A admits induction.

Extending functions to partial functions seems arbitrary.

⊥ + y = ?

⊥ ∗ 0 = 0 ?

0 ∗ ⊥= 0 ?

0/0 ∗ ⊥= ?

2


