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CS 6110 Spring 2015 Wed. March 18, 2015

Lecture 23

Topics

1. If you can attend Voevodsky’s lecture at 4:30 pm in Malott 406 it will be relevant to
discussion in Friday’s lecture.

2. To reason about partial functions we need a new equality relation, ¢; ~ t5, and a new
induction principle, fized point induction. We first discuss the fixed points of recursive
functionals.

3. We will study Kleene’s Recursion Theorem as a basis for the induction.

4. We will study a generalization of Kleene’s theorem in a classical setting.

Kleene Equality ¢(z) ~ 9 (x) — converge or diverge together and if they converge, then they
converge to the same value.

Functionals and fixed points

Consider the recursive function on N:
f(z,y) =if v =y then y + 1 else f(z, f(z — 1,y +1)).

Write this in terms of the functional F':
Af Az, y. if o =y then y+ 1 else f(x, f(x — 1,y +1)).

F(f) = Az \y.
filz,y)= ifx=y theny+1 elsexz+1
Let fo(z,y)= ifx>y then x +1 elsey —1

fs(z,y) = ifx>y&even(r —y) thenx+1 else L (where L is the diverging element)

Notice that for ¢ = 1,2,3
F(f)(z,y) ~ if z =y then y + 1 else fi(z, fi(x — 1,y + 1))



Notice that f3 is a fixed point of F, i.e.
F(fs) ~ f3
F(fs) = MAx,y.if z =y then y+ 1 else f3(z, fs(z — 1L,y + 1))
= Az,y.if x =y then y + 1 else if > y & even(x — y) then x + 1 else L
= ifz>y&even(r —y) then v+ 1 else L
if x =y then even(z — y)
hence = + 1 (same value as f3)
if x £ y then if x >y
so if even(x — y) then x + 1 (same value as f3)
if x <y then L (same value as f3)

But also notice:
F(fi1) =~ fi since
F(f1) Ax,y. if © =y then y + 1
so if x = y this is the same value as f;
if x # y then fi(x, fi(x — 1,y + 1)) and fi(z,...) is « + 1, this is the same value as f

Notice f3(z,y) C fi(z,y).

Kleene’s Recursion Theorem For all recursive functionals F(p) ~ ¢’ there is a partial
recursive function ¢ such that F(p) ~ ¢, and for all ¢' such that F(¢') ~ ¢', ¢ C ¢'.

Proof sketch:

Let @9 = the totally undefined patial function on N. Define the sequence ;1 ~ F(p;),
note ¢; &, © < 7.

Define ¢, as the limit of this sequence. ¢, (z) is defined if there is an i such that
wi(x) | . To compute ¢, (z) we compute the sequence ¢1(x), p2(x), ..., pn(z) and give
a value if one of the @;(z) is defined.

We need to establish two claims:

(a) Flpw)(x) = pu(z) for all z

(b) If F(p)(x) ~ p(z) for all z, then ¢, (x) C p(zx)
Why are these intuitively true?

(a) F(pu)(x) =~ pu(z) because if F(p,)(z) = k for some number k then at some least
i, F(pi(x)) = k. F(py,)(z) will give the same value because it accesses the same
data.

(b) If F(p)(x) ~ ¢(x), then p,(z) = ¢(x) because g0 C ¢, v1 E ¢, ..., C ¢, and
this sequence has the least amount of data needed to compute the fixed point.



