Lecture 23

Topics

- 1. If you can attend Voevodsky's lecture at 4:30 pm in Malott 406 it will be relevant to discussion in Friday's lecture.
- 2. To reason about partial functions we need a new equality relation, $t_1 \simeq t_2$, and a new induction principle, *fixed point induction*. We first discuss the fixed points of recursive functionals.
- 3. We will study Kleene's Recursion Theorem as a basis for the induction.
- 4. We will study a generalization of Kleene's theorem in a classical setting.

Kleene Equality $\varphi(x) \simeq \psi(x)$ – converge or diverge together and if they converge, then they converge to the same value.

Functionals and fixed points

Consider the recursive function on \mathbb{N} : f(x, y) = if x = y then y + 1 else f(x, f(x - 1, y + 1)).

Write this in terms of the functional F: $\lambda f.\lambda x, y$. if x = y then y + 1 else f(x, f(x - 1, y + 1)). $F(f) = \lambda x.\lambda y$.

	$f_1(x,y) =$	if $x = y$	then $y + 1$	else $x + 1$
Let	$f_2(x,y) =$	if $x \ge y$	then $x + 1$	else $y - 1$
	$f_3(x,y) =$	if $x \ge y \& even(x-y)$	then $x + 1$	else \perp (where \perp is the diverging element)

Notice that for i = 1, 2, 3

 $F(f_i)(x,y) \simeq$ if x = y then y + 1 else $f_i(x, f_i(x-1, y+1))$

Notice that f_3 is a fixed point of F, i.e. $F(f_3) \simeq f_3$ $F(f_3) = \lambda x, y. \text{ if } x = y \text{ then } y + 1 \text{ else } f_3(x, f_3(x - 1, y + 1))$ $= \lambda x, y. \text{ if } x = y \text{ then } y + 1 \text{ else if } x \ge y \& even(x - y) \text{ then } x + 1 \text{ else } \bot$ $= \text{ if } x \ge y \& even(x - y) \text{ then } x + 1 \text{ else } \bot$ if x = y then even(x - y) $\text{ hence } x + 1 \text{ (same value as } f_3)$ $\text{ if } x \ne y \text{ then if } x > y$ $\text{ so if } even(x - y) \text{ then } x + 1 \text{ (same value as } f_3)$ $\text{ if } x < y \text{ then } \bot \text{ (same value as } f_3)$

But also notice:

$$\begin{array}{rcl} F(f_1) &\simeq & f_1 \text{ since} \\ F(f_1) &= & \lambda x, y. \text{ if } x = y \text{ then } y+1 \\ & & \text{ so if } x = y \text{ this is the same value as } f_1 \\ & & \text{ if } x \neq y \text{ then } f_1(x, f_1(x-1, y+1)) \text{ and } f_1(x, ...) \text{ is } x+1, \text{ this is the same value as } f_1 \end{array}$$

Notice $f_3(x, y) \sqsubseteq f_1(x, y)$.

Kleene's Recursion Theorem For all recursive functionals $F(\varphi) \simeq \varphi'$ there is a partial recursive function φ such that $F(\varphi) \simeq \varphi$, and for all φ' such that $F(\varphi') \simeq \varphi'$, $\varphi \sqsubseteq \varphi'$.

Proof sketch:

Let φ_0 = the totally undefined patial function on \mathbb{N} . Define the sequence $\varphi_{i+1} \simeq F(\varphi_i)$, note $\varphi_i \sqsubseteq \varphi_j$, i < j.

Define φ_{ω} as the *limit* of this sequence. $\varphi_{\omega}(x)$ is defined if there is an *i* such that $\varphi_i(x) \downarrow$. To compute $\varphi_{\omega}(x)$ we compute the sequence $\varphi_1(x), \varphi_2(x), ..., \varphi_n(x)$ and give a value if one of the $\varphi_j(x)$ is defined.

We need to establish two claims:

- (a) $F(\varphi_{\omega})(x) \simeq \varphi_{\omega}(x)$ for all x
- (b) If $F(\varphi)(x) \simeq \varphi(x)$ for all x, then $\varphi_{\omega}(x) \sqsubseteq \varphi(x)$

Why are these intuitively true?

- (a) $F(\varphi_{\omega})(x) \simeq \varphi_{\omega}(x)$ because if $F(\varphi_{\omega})(x) = k$ for some number k then at some least $i, F(\varphi_i(x)) = k$. $F(\varphi_{\omega})(x)$ will give the same value because it accesses the same data.
- (b) If $F(\varphi)(x) \simeq \varphi(x)$, then $\varphi_{\omega}(x) = \varphi(x)$ because $\varphi_0 \sqsubseteq \varphi$, $\varphi_1 \sqsubseteq \varphi, ..., \varphi_i \sqsubseteq \varphi$, and this sequence has the least amount of data needed to compute the fixed point.