Lecture 23

Topics

1. If you can attend Voevodsky's lecture at $4: 30 \mathrm{pm}$ in Malott 406 it will be relevant to discussion in Friday's lecture.
2. To reason about partial functions we need a new equality relation, $t_{1} \simeq t_{2}$, and a new induction principle, fixed point induction. We first discuss the fixed points of recursive functionals.
3. We will study Kleene's Recursion Theorem as a basis for the induction.
4. We will study a generalization of Kleene's theorem in a classical setting.

Kleene Equality $\varphi(x) \simeq \psi(x)$ - converge or diverge together and if they converge, then they converge to the same value.

Functionals and fixed points

Consider the recursive function on \mathbb{N} :
$f(x, y)=$ if $x=y$ then $y+1$ else $f(x, f(x-1, y+1))$.
Write this in terms of the functional F :
$\lambda f . \lambda x, y$. if $x=y$ then $y+1$ else $f(x, f(x-1, y+1))$.
$F(f)=\lambda x . \lambda y$.

$$
f_{1}(x, y)=\text { if } x=y \quad \text { then } y+1 \quad \text { else } x+1
$$

Let $f_{2}(x, y)=$ if $x \geq y \quad$ then $x+1 \quad$ else $y-1$ $f_{3}(x, y)=$ if $x \geq y \& \operatorname{even}(x-y)$ then $x+1 \quad$ else \perp (where \perp is the diverging element)

Notice that for $i=1,2,3$
$F\left(f_{i}\right)(x, y) \simeq$ if $x=y$ then $y+1$ else $f_{i}\left(x, f_{i}(x-1, y+1)\right)$

Notice that f_{3} is a fixed point of F, i.e.

$$
\begin{aligned}
F\left(f_{3}\right) \simeq & f_{3} \\
F\left(f_{3}\right)= & \lambda x, y . \text { if } x=y \text { then } y+1 \text { else } f_{3}\left(x, f_{3}(x-1, y+1)\right) \\
= & \lambda x, y \text {. if } x=y \text { then } y+1 \text { else if } x \geq y \& \operatorname{even}(x-y) \text { then } x+1 \text { else } \perp \\
= & \text { if } x \geq y \& \text { even }(x-y) \text { then } x+1 \text { else } \perp \\
& \text { if } x=y \text { then } \operatorname{even}(x-y) \\
& \left.\quad \text { hence } x+1 \text { (same value as } f_{3}\right) \\
& \quad \text { if } x \neq y \text { then if } x>y \\
& \quad \text { so if } \operatorname{even}(x-y) \text { then } x+1\left(\text { same value as } f_{3}\right) \\
& \text { if } x<y \text { then } \perp\left(\text { same value as } f_{3}\right)
\end{aligned}
$$

But also notice:

$$
\begin{aligned}
F\left(f_{1}\right) \simeq & f_{1} \text { since } \\
F\left(f_{1}\right)= & \lambda x, y . \text { if } x=y \text { then } y+1 \\
& \text { so if } x=y \text { this is the same value as } f_{1} \\
& \text { if } x \neq y \text { then } f_{1}\left(x, f_{1}(x-1, y+1)\right) \text { and } f_{1}(x, \ldots) \text { is } x+1, \text { this is the same value as } f_{1}
\end{aligned}
$$

Notice $f_{3}(x, y) \sqsubseteq f_{1}(x, y)$.

Kleene's Recursion Theorem For all recursive functionals $F(\varphi) \simeq \varphi^{\prime}$ there is a partial recursive function φ such that $F(\varphi) \simeq \varphi$, and for all φ^{\prime} such that $F\left(\varphi^{\prime}\right) \simeq \varphi^{\prime}, \varphi \sqsubseteq \varphi^{\prime}$.

Proof sketch:

Let $\varphi_{0}=$ the totally undefined patial function on \mathbb{N}. Define the sequence $\varphi_{i+1} \simeq F\left(\varphi_{i}\right)$, note $\varphi_{i} \sqsubseteq \varphi_{j}, i<j$.

Define φ_{ω} as the limit of this sequence. $\varphi_{\omega}(x)$ is defined if there is an i such that $\varphi_{i}(x) \downarrow$. To compute $\varphi_{\omega}(x)$ we compute the sequence $\varphi_{1}(x), \varphi_{2}(x), \ldots, \varphi_{n}(x)$ and give a value if one of the $\varphi_{j}(x)$ is defined.
We need to establish two claims:
(a) $F\left(\varphi_{\omega}\right)(x) \simeq \varphi_{\omega}(x)$ for all x
(b) If $F(\varphi)(x) \simeq \varphi(x)$ for all x, then $\varphi_{\omega}(x) \sqsubseteq \varphi(x)$

Why are these intuitively true?
(a) $F\left(\varphi_{\omega}\right)(x) \simeq \varphi_{\omega}(x)$ because if $F\left(\varphi_{\omega}\right)(x)=k$ for some number k then at some least $i, F\left(\varphi_{i}(x)\right)=k . F\left(\varphi_{\omega}\right)(x)$ will give the same value because it accesses the same data.
(b) If $F(\varphi)(x) \simeq \varphi(x)$, then $\varphi_{\omega}(x)=\varphi(x)$ because $\varphi_{0} \sqsubseteq \varphi, \varphi_{1} \sqsubseteq \varphi, \ldots, \varphi_{i} \sqsubseteq \varphi$, and this sequence has the least amount of data needed to compute the fixed point.

