Advanced Progamming Languages

Lecture 20
CS 6110 Spring 2015
Wed. March 11, 2015

Lecture 20

Topics

1. Problem Set 3 - two problems presented today.
2. Motivation for "equational reasoning" in type theory, new results.
3. Goodstein approach - some philosophy and history, online with lecture notes.
4. Goodstein recursive arithmetic.

1. Problem Set 3

(a)

We have used primitive recursion with simple types,
e.g. $a d d: \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{N}$
$\left\{\begin{array}{l}\text { add } 0 y=y \\ \text { add } S(x) y=S(\text { add } x y)\end{array}\right.$
Prove that add and mult as defined before are total functions on \mathbb{N}, e.g. have type $\mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{N}$. We could also define the type $\mathbb{N} \times \mathbb{N}$ of ordered pairs of numbers, $<n, m>$. In this case we could assign the type $\mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$

We can define higher-order primitive recursion as follows:
$R a b 0=a$
$R a b S(n)=b n(R a b n)$
Where $a \in \alpha, b \in \mathbb{N} \rightarrow \alpha \rightarrow \alpha, 0 \in \mathbb{N}, S: \mathbb{N} \rightarrow \mathbb{N}$
$R: \alpha \rightarrow(N \rightarrow \alpha \rightarrow \alpha) \rightarrow(\mathbb{N} \rightarrow \alpha)$
Define $\sum_{i=0}^{n} f(i)$ with higher-order primitive recursions.
Give the types. Prove that functions defined by higher order recursion from (total) computable functions are total. Take α to be \mathbb{N} for the proof.
2. Motivation for equational reasoning.

A great deal of reasoning in type theory is equational over equations of the type $t_{1}=t_{2} \in T$ for various types T and for various notions of equality, such as:

$$
\begin{array}{ll}
t_{1} \sim t_{2} \quad \text { in } \quad \text { Base } \\
t_{1} \sim t_{2} & \text { in } \\
t_{1}=t_{2} & \text { in } \\
\text { (over partial types) } & \mathbb{N} \text { over total types) }
\end{array}
$$

Abhishek and Dr. Rahli gave us a deeper account for partial types in Nuprl. The line of research came from CS6110 in 2012.
A simple example of this style of reasoning goes back to Skolem in 1934 - that's why logic is strong in Sweden. We examine the 1957 approach of R.L. Goodstein for numbers and recursive number theory.

He uses only primitive recursion and double recursion.

$$
\left\{\begin{array}{l}
G(0, n) \text { is a given function, say } f(n) \\
G(m+1,0)=a(m, G(m, b(m))) \\
G(m+1, n+1)=c(m, n, G(m, d(m, n, G(m+1, n))), G(m+1, n))
\end{array}\right.
$$

Goodstein starts with a very cogent account of how he conceives of the type \mathbb{N}. We discuss this a bit. You are urged to read the account included with these notes.

Expressing mathematics in a programming language

We use add, mult, and these functions to define logic:

$$
\begin{array}{ll}
\operatorname{pred}(0)=0 & \operatorname{monus}(x, 0)=x \\
\operatorname{pred}(S(x))=x & \operatorname{monus}(x, S(y))=\operatorname{pred}(\operatorname{monus}(x, y))
\end{array}
$$

Let $x-y$ abbreviate $\operatorname{monus}(x, y)$.
Define the positive difference $|x, y|$ by $|x, y|=(x \dot{\bullet})+(y \dot{\bullet})$.
Define $a=b$ for a and b numbers to be a true proposition iff $|a, b|=0$.
Goodstein defines $\alpha(|a, b|)$ as the number of the proposition $a=b$.
We can define the logical operators on propositions as follows.
Let p and q be propositions $a=b$ and $c=d$ respectively. Then

$$
\begin{array}{ll}
\sim p & \text { is } \quad(1-|a, b|)=0 \\
p \& q & \text { is } \quad(|a, b|+|c, d|)=0 \\
p \vee q & \text { is } \quad(|a, b| \cdot|c, d|)=0 \\
p \rightarrow q & \text { is } \quad \sim p \vee q \\
p \leftrightarrow q & \text { is }
\end{array} \quad(p \rightarrow q) \&(q \rightarrow p)
$$

Goodstein defines these "quantifiers":
$A_{x}^{n}(f(x)=0) \quad$ for all x from 0 to $n \quad f(x)=0$
$E_{x}^{n}(f(x)=0) \quad$ for some x from 0 to $n \quad f(x)=0$
$L_{x}^{n}(f(x)=0) \quad$ the least x from 0 to $n \quad f(x)=0$
We can validate mathematical induction:

$$
\left[p(0) \& A_{x}^{n}(p(x) \rightarrow p(x+1))\right] \rightarrow p(n)
$$

