
Advanced Progamming Languages Lecture 20
CS 6110 Spring 2015 Wed. March 11, 2015

Lecture 20

Topics

1. Problem Set 3 – two problems presented today.

2. Motivation for “equational reasoning” in type theory, new results.

3. Goodstein approach – some philosophy and history, online with lecture notes.

4. Goodstein recursive arithmetic.

1. Problem Set 3

(a)

We have used primitive recursion with simple types,

e.g. add : N→ N→ N{
add 0 y = y
add S(x) y = S(add x y)

Prove that add and mult as defined before are total functions on N, e.g. have type
N → N → N. We could also define the type N × N of ordered pairs of numbers,
< n,m >. In this case we could assign the type N× N→ N

(b)

We can define higher-order primitive recursion as follows:

R a b 0 = a
R a b S(n) = b n (R a b n)

Where a ∈ α, b ∈ N→ α→ α, 0 ∈ N, S : N→ N

R : α→ (N → α→ α)→ (N→ α)

Define
n∑

i=0

f(i) with higher-order primitive recursions.

Give the types. Prove that functions defined by higher order recursion from (total)
computable functions are total. Take α to be N for the proof.

1

2. Motivation for equational reasoning.

A great deal of reasoning in type theory is equational over equations of the type
t1 = t2 ∈ T for various types T and for various notions of equality, such as:

t1 ∼ t2 in Base

t1 ∼ t2 in N (over partial types)
t1 = t2 in N (over total types)

Abhishek and Dr. Rahli gave us a deeper account for partial types in Nuprl. The line
of research came from CS6110 in 2012.

A simple example of this style of reasoning goes back to Skolem in 1934 – that’s
why logic is strong in Sweden. We examine the 1957 approach of R.L. Goodstein for
numbers and recursive number theory.

He uses only primitive recursion and double recursion.
G(0, n) is a given function, say f(n)
G(m+ 1, 0) = a(m,G(m, b(m)))
G(m+ 1, n+ 1) = c(m,n,G(m, d(m,n,G(m+ 1, n))), G(m+ 1, n))

Goodstein starts with a very cogent account of how he conceives of the type N. We
discuss this a bit. You are urged to read the account included with these notes.

Expressing mathematics in a programming language

We use add, mult, and these functions to define logic:

pred(0) = 0 monus(x, 0) = x
pred(S(x)) = x monus(x, S(y)) = pred(monus(x, y))

Let x ·− y abbreviate monus(x, y).

Define the positive difference |x, y| by |x, y| = (x ·− y) + (y ·− x).

Define a = b for a and b numbers to be a true proposition iff |a, b| = 0.

Goodstein defines α(|a, b|) as the number of the proposition a = b.

We can define the logical operators on propositions as follows.

Let p and q be propositions a = b and c = d respectively. Then

∼ p is (1 ·− |a, b|) = 0
p& q is (|a, b|+ |c, d|) = 0
p ∨ q is (|a, b| · |c, d|) = 0
p→ q is ∼ p ∨ q
p↔ q is (p→ q) & (q → p)

2

Goodstein defines these “quantifiers”:

An
x(f(x) = 0) for all x from 0 to n f(x) = 0

En
x (f(x) = 0) for some x from 0 to n f(x) = 0

Ln
x(f(x) = 0) the least x from 0 to n f(x) = 0

We can validate mathematical induction:

[p(0) &An
x(p(x)→ p(x+ 1))]→ p(n)

3

