
Advanced Progamming Languages Lecture 20
CS 6110 Spring 2015 Wed. March 11, 2015

Lecture 20

Topics

1. Problem Set 3 – two problems presented today.

2. Motivation for “equational reasoning” in type theory, new results.

3. Goodstein approach – some philosophy and history, online with lecture notes.

4. Goodstein recursive arithmetic.

1. Problem Set 3

(a)

We have used primitive recursion with simple types,

e.g. add : N→ N→ N{
add 0 y = y
add S(x) y = S(add x y)

Prove that add and mult as defined before are total functions on N, e.g. have type
N → N → N. We could also define the type N × N of ordered pairs of numbers,
< n,m >. In this case we could assign the type N× N→ N

(b)

We can define higher-order primitive recursion as follows:

R a b 0 = a
R a b S(n) = b n (R a b n)

Where a ∈ α, b ∈ N→ α→ α, 0 ∈ N, S : N→ N

R : α→ (N → α→ α)→ (N→ α)

Define
n∑

i=0

f(i) with higher-order primitive recursions.

Give the types. Prove that functions defined by higher order recursion from (total)
computable functions are total. Take α to be N for the proof.

1

2. Motivation for equational reasoning.

A great deal of reasoning in type theory is equational over equations of the type
t1 = t2 ∈ T for various types T and for various notions of equality, such as:

t1 ∼ t2 in Base

t1 ∼ t2 in N (over partial types)
t1 = t2 in N (over total types)

Abhishek and Dr. Rahli gave us a deeper account for partial types in Nuprl. The line
of research came from CS6110 in 2012.

A simple example of this style of reasoning goes back to Skolem in 1934 – that’s
why logic is strong in Sweden. We examine the 1957 approach of R.L. Goodstein for
numbers and recursive number theory.

He uses only primitive recursion and double recursion.
G(0, n) is a given function, say f(n)
G(m+ 1, 0) = a(m,G(m, b(m)))
G(m+ 1, n+ 1) = c(m,n,G(m, d(m,n,G(m+ 1, n))), G(m+ 1, n))

Goodstein starts with a very cogent account of how he conceives of the type N. We
discuss this a bit. You are urged to read the account included with these notes.

Expressing mathematics in a programming language

We use add, mult, and these functions to define logic:

pred(0) = 0 monus(x, 0) = x
pred(S(x)) = x monus(x, S(y)) = pred(monus(x, y))

Let x ·− y abbreviate monus(x, y).

Define the positive difference |x, y| by |x, y| = (x ·− y) + (y ·− x).

Define a = b for a and b numbers to be a true proposition iff |a, b| = 0.

Goodstein defines α(|a, b|) as the number of the proposition a = b.

We can define the logical operators on propositions as follows.

Let p and q be propositions a = b and c = d respectively. Then

∼ p is (1 ·− |a, b|) = 0
p& q is (|a, b|+ |c, d|) = 0
p ∨ q is (|a, b| · |c, d|) = 0
p→ q is ∼ p ∨ q
p↔ q is (p→ q) & (q → p)

2

Goodstein defines these “quantifiers”:

An
x(f(x) = 0) for all x from 0 to n f(x) = 0

En
x (f(x) = 0) for some x from 0 to n f(x) = 0

Ln
x(f(x) = 0) the least x from 0 to n f(x) = 0

We can validate mathematical induction:

[p(0) &An
x(p(x)→ p(x+ 1))]→ p(n)

3

