
Advanced Progamming Languages Lecture 18
CS 6110 Spring 2015 Wed. March 4, 2015

Lecture 18

Topics

1. The typed λ-calculus continued

Curry vs. Church typing
Strong Normalization
A wild conjecture

2. Statman’s Theorem – ties to Theory A

3. Partial Types

The conjecture: λ-terms with partial types are SN.

4. Midterm exam review, Krvine ASM, and higher-order primitive recursion

1. The typed λ-calculus continued

Curry style typing – based on untyped terms (Nuprl) λ(x.x) ∈ α→ α

Church style typing – terms come with types attached (Coq) λxα.x ∈ α→ α

Comparisons:

Lisp is Curry style, can reason about untyped computation.

The ML family of languages is Church style, but they allow polymorphism, e.g.
λxα.λyβ.x

Key Theorem for either style: Strong Normalization

Thompson section 2.7, p.45

Induction on type structures Def. 2.22

We might discuss the Tait method for a deeper theorem. Another approach to this
topic is to use logical relations. We will not cover this, but see Harper’s textbook.

Also see Thompson’s account of primitive recursion in section 2.9.

Note: Thompson’s account of general recursion, section 2.10, does not agree with
Kleene’s. We stick with Kleene’s account.

1

2. Statman’s Theorem

We will not explore this topic, but Statman proved that β-equality on the typed lambda
terms is decidable but not elementary ! So the decision method is of exponential com-
plexity.

3. Partial types

We have mentioned the partial types, written ᾱ. It is curious that SN might hold for
these since self-application and thus the Y combinator is prohibited.

4. Midterm review continued

The Abstract State Machine for evalc – see the Lecture 17 supplement by Dr. Rahli,
section 6, page 3.

ASM loop(term,env,stack)

(i) loop(x, e, lst) = let < t, e′ >= e(x)
in loop(t, e′, lst)

(ii) loop(λ(x.b), e, lst) = match lst with
remove closure from []⇒< λ(x.b), e >
stack and evaluate | < a, e′ > :: tl⇒
b in new env loop(b, e[x→< a, e′ >], tl)

(iii) loop(ap(f ; a), e, lst) = loop(f, e, < a, e > :: lst)
add closure <a, env>
to stack, evaluate f

Optional exercise: Write a Lisp style dynamic scoping evaluator.

Note, Dr. Rahli lets loop(t, e, []) evaluate to (t, e) to simplify the typing, e.g. to return
a V closure.

Exercise: Evaluate ap(λ(x.λ(y.x)); I) using loop.

Observation. We can make the type of V closure more informative by writing
V closure = v : V alue×Env(v), in detail v : V al×{e : Env | domain(e) = freevars(v)}

This is called a dependent type.

2

