
Scoping, Environment, and Closures

Vincent Rahli

CS6110 Lecture 11

Monday Feb 13, 2015

1 Source language

This document discusses the issue of the scope of a variable in a program using
a simple programming language, which we call SL for Source Language, i.e., the
language we want to analyze, study and run. Its syntax is:

t ∈ Term ::= x (variable)
| n (natural number)
| λx.t (λ-abstraction)
| t1t2 (application)
| t1 + t2 (addition)
| let x = t1 in t2 (let-expression)

It is an applied λ-calculus with variables, λ-abstractions, and applications as
in the λ-calculus, and in addition has natural numbers, an addition operator,
and a let operator. We sometimes write t1(t2) for t1t2. Note that we use · to
distinguish the constructors of our source language from the constructors of our
meta-language. Our meta-language (ML) will also be an applied λ-calculus such
as Milner et al.’s ML language [2].

We define below the operational semantics of this language to be lazy (also
called call-by-name), i.e., to evaluate fa, we first have to compute f to a λ-
abstraction of the form λx.b and then we can β-reduce the redex (λx.b)a to
b[x\a] without computing first a to a value. Our let operator allows us to
selectively and eagerly evaluate terms. To evaluate let x = t1 in t2, we first
have to compute t1 to a value before evaluating t2. If t1 reduces to the value v

then let x = t1 in t2 reduces to t2[x\v]. This let operator allows us to define an
eager (or call-by-value) application operator as follows: eager(f, a) = let x =
a in f(x), where x is chosen to be fresh w.r.t. f . Another advantage of let
constructs is that they also make programs more readable.

Therefore, let constructs allow to selectively choose between a lazy and an
eager evaluation strategy in a lazy programming language. This is especially
useful given that some programs are more efficient when run lazily and some
programs are more efficient when run eagerly. Note that even though most

1



programming languages are eager such as OCaml, SML, Scala, Lisp, etc., some
programming languages still use a lazy evaluation strategy by default, such as
Haskell or Nuprl. Note that all these languages support both eager and lazy
evaluation, because the eager languages can always simulate lazy evaluation
using thunks (wrapping an expression t into a thunk means building something
like λx.t, where x is free w.r.t. f in order to delay the evaluation of t) and the
two lazy languages mentioned above feature let-constructs as the one discussed
above.

The sole purpose of adding numbers to our language is to get other kinds of
values than λ-expressions.

Exercise 1. Give an example of a program than runs faster if ran lazily, and
one that runs faster if ran eagerly.

2 Dynamic vs. static scoping

Let us now discuss variables and the issue of the scope of a variable in a program.
The scope of a variable x in a program is the region which can reference x. There
are mainly two kinds of scoping: one is called static or lexical, and the other
one is called dynamic. Let us consider the following example:

let x = 1 in

let y = x in

let x = 3 in

y

What is a sensible way of evaluating this program? We first evaluate x, which
then gets bound to 1. We then evaluate y which gets bound to x, which is equal
to 1. Therefore, the only sensible thing to do here is to bind y to 1. Then, we
evaluate the last x which gets bound to 3. And finally we evaluate y which is
equal to 1. Our program then returns 1. So, far there does not seem to be any
ambiguity. Let’s now consider a slightly different program (where we wrapped
the definition of y inside a thunk to delay its evaluation):

let x = 1 in

let y = λz.x in

let x = 3 in

y(17)

Again we evaluate x, which gets bound to 1. Then we evaluate y, which gets
bound to the value λz.x. Then, we evaluate the last x, which gets bound
to 3. Finally, we evaluate y(17), which reduces to x. Which x is that? By
looking at the structure of our program, it could be the first x. However, at
the time we evaluate (λz.x)17, x has been rebound to 3, so it could be the
second x. The first solution is called static or lexical scoping because matching
variables to their bindings can be determined just by looking at the structure of
the program, without having to run it. The second solution is called dynamic

2



binding because one needs to run the program to figure out what variables are
bound to. Static scoping is standard in functional programming languages for
several reasons. The main one being that programs are easier to read and reason
about. Some scripting languages such as Perl still use dynamic scoping. Also,
some versions of Common Lisp support both static and dynamic scoping. Note
that dynamic binding has some advantages. For example, it can be used to
modify the behavior of a program at runtime.

Exercise 2. Give an “interesting” example of a program that uses dynamic
scoping to modify its behavior at runtime (using the Y combinator for example,
or using a fix that computes as follows fix(F ) 7→ F (fix(F ))).

3 Environments and closures

Let us make that difference more precise by defining two interpreters for our
language: one that uses simple environments of type e ∈ Var → (Term∪{error})
to implement dynamic scoping, and one that uses environments of type c ∈
Var → (Closure∪{error}) to implement static scoping, where a closure is a pair
of a value v and an environment that provides the values of the free variables
of v. Closures where first introduced by Landin to design his SECD abstract
machine [3]. (We will see later in the course how to build an abstract machine for
our source language using Danvy’s methodology [1].) Closures are used to “save”
the static/lexical environments of values when evaluating a term in order to get
the static scoping of variables right. The empty environment is em = λx.error.
We write e[x 7→ t] for the environment λz.if z = x then t else e(z). (Note that
we assume that our meta-language is lazy too.)

Dynamic scoping:

eval(x, e) = e(x)
eval(n, e) = n

eval(λx.t, e) = λx.t

eval(fa, e) = let λx.b = eval(f, e) in
eval(b, e[x 7→ eval(a, e)])1

eval(n + m, e) = let v = eval(n, e) in
let w = eval(m, e) in
v + w

eval(let x = t in b, e) = let v = eval(t, e) in
eval(b, e[x 7→ v])

1Note that we need eval(a, e) to be evaluated lazily here to respect the lazyness of our
source language (it can be done using thunks).

3



Static scoping:

eval(x, c) = c(x)
eval(n, c) = (n, c)2

eval(λx.t, c) = (λx.t, c)
eval(fa, c) = let (λx.b, c′) = eval(f, c) in

eval(b, c′[x 7→ eval(a, c)])3

eval(n + m, c) = let (v, c1) = eval(n, c) in
let (w, c2) = eval(m, c) in
(v + w, c)4

eval(let x = t in b, c) = let (v, c′) = eval(t, c) in
eval(b, c[x 7→ (v, c′)])

Another solution could be to not only store values in environments but any
term, and instead of having the call to eval in the environment in the application
case, we could call eval once we have fetched a closure from an environment in
the variable case:

eval(x, c) = let (t, c′) = c(x) in eval(t, c′)
eval(n, c) = (n, c)
eval(λx.t, c) = (λx.t, c)
eval(fa, c) = let (λx.b, c′) = eval(f, c) in

eval(b, c′[x 7→ (a, c)]
eval(n + m, c) = let (v, c1) = eval(n, c) in

let (w, c2) = eval(m, c) in
(v + w, c)

eval(let x = t in b, c) = let (v, c′) = eval(t, c) in
eval(b, c[x 7→ (v, c′)])

4 Side note: Bootstrapping

We see here that our source language SL is in fact a subset of our meta-language.
How can one then build a compiler for our meta-language? One solution would
be to directly code our interpreters in, say C or an assembly language, instead
of using the high-level language we have used in this document. Note that one
can then bootstrap the SL’s compiler by first building a compiler for a small
subset of SL in C or assembly and then using that subset to build the rest of the
language. To bootstrap a compiler this is what one usually does: (1) write a
compiler C1 for a small subset of SL, say SL0, using another language for which
there is already a compiler; (2) write and compile a compiler C2 for SL0 in SL0

using C1; (3) write a compiler for SL in SL0 using C2.

2Here c could be any environment such as em because n does not have any free variable.
3Again, we need eval(a, c) to be evaluated lazily to respect the lazyness of our source

language (it can be done using thunks).
4Again, here c could be any environment because v + w does not have any free variable.

4



5 Side note: Nuprl

Remember that Nuprl uses a uniform syntax for terms. In Nuprl, terms are of
the form t ∈ NTerm ::= {operator}(b1; · · · ; bn), where each bi is called a bound
term and is of the form l.t, where l is a list of variables (separated by commas,
and we omit the dot when l is empty) meant to be binders. For example, the
underline representation of a lambda λx.t in Nuprl is {lambda}(x.u), where u is
the Nuprl representation of t, and the underline representation of an application
fa is {apply}(g; b), where g is the Nuprl representation of g and b is the Nuprl
representation of a. Let-expressions are called call-by-value expressions in Nuprl
and are of the form {callbyvalue}(t1;x.t2) (let us write {cbv}(t1;x.t2) for short).
An operator can be more than a “name”, it can also have parameters. We use
parameters, e.g., to represent variables and numbers. An operator is really an
identifier followed by a list of parameters, and a parameter is a value and a type.
For example, the variable x is represented as {variable, x : v}() in Nuprl, where
x is the value of our parameter and v its type indicating that it is a variable.
The natural number 17 is represented as {natural number, 17 : n}().

6 To be continued

In a compiler for a functional programming language, once the front-end (not
covered here) has generated some internal representation of the code, programs
go through a number of transformations. The evaluator that uses closures above
gives rise to a conversion called closure conversion. This is a key transformation
to, among other things, get the binding of variables right. In future lectures we
will cover the CPS and defunctionalization transformations, and we will show
how to get from a simple evaluator that uses substitution to an abstract state
machine [1].

References

[1] Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan Midtgaard. A
functional correspondence between evaluators and abstract machines. In
Proceedings of the 5th International ACM SIGPLAN Conference on Princi-
ples and Practice of Declarative Programming, 27-29 August 2003, Uppsala,
Sweden, pages 8–19. ACM, 2003.

[2] Michael Gordon, Robin Milner, and Christopher Wadsworth. Edinburgh
LCF: a mechanized logic of computation, volume 78. Springer-Verlag, NY,
1979.

[3] Peter J. Landin. The mechanical evaluation of expressions. Computer Jour-
nal, 6(5):308–320, 1964.

5


	Source language
	Dynamic vs. static scoping
	Environments and closures
	Side note: Bootstrapping
	Side note: Nuprl
	To be continued

