
Continuations

Vincent Rahli (rahli@cs.cornell.edu)

CS6110 Lecture 12

Wednesday Feb 18, 2015

1 Object language

Let our object language be:

t ∈ Term ::= x (variable)
| λx.t (λ-abstraction)
| t1t2 (application)

2 Simple evaluator using substitution

The following eval function is of type Term → Term (it is actually a partial
function because it can get stuck in the application case, or it can diverge):

eval(x) = x

eval(λx.t) = λx.t

eval(fa) = let λx.b = eval(f) in eval(b[x\a])

3 Closure conversion

This evaluator is of type (Term × Env) → (Value × Env), where Env = Var →
(Term× Env) and where Value is the type of values—a subtype of Term:

eval(x, e) = let (t, e′) = e(x) in eval(t, e′)
eval(λx.t, e) = (λx.t, e)
eval(fa, e) = let (λx.b, e′) = eval(f, e) in

eval(b, e′[x 7→ (a, e)])

Given a term t, we evaluate t by first initializing the environment to em (the
empty environment λx.error): eval(t, em).

1



4 CPS transformation

This evaluator is of type (Term × Env × Cont) → VClosure, where Cont =
VClosure → VClosure and VClosure = Value× Env:

eval(x, e, k) = let (t, e′) = e(x) in eval(t, e′, k)
eval(λx.t, e, k) = k(λx.t, e)
eval(fa, e, k) = eval(f, e, k′), where k′ = λ(λx.b, e′).eval(b, e′[x 7→ (a, e)], k)

The continuation k′ says what the evaluator is supposed to do once f has been
evaluated to a value. What k′ does is that it takes as input a closure of the
form (v, e′) and checks whether v is a λ-expression of the form λx.b. If it’s not
then the computation gets stuck because we don’t get a β-redex. Otherwise the
continuation says that as before, we have to keep evaluating the body b of the
λ-expression, where x now gets bound to the argument (a, e). This amounts to
doing β-reduction.

Our initial continuation is simply the identity function IK = λx.x: eval(t, em, IK).

5 Defunctionalization

Continuations are not encoded by a datatype:

k ∈ CONT ::= CONT I

| CONT LAM of Term× Env× Cont

This evaluator is of type (Term× Env× CONT) → VClosure:

eval(x, e, k) = let (t, e′) = e(x) in eval(t, e′, k)
eval(λx.t, e, k) = apply cont(λx.t, e, k)
eval(fa, e, k) = eval(f, e, CONT LAM(a, e, k))

Where apply cont (of type (Value×Env×CONT) → VClosure) is defined as follows:

apply cont(t, e, CONT I) = (t, e)
apply cont(λx.b, e′, CONT LAM(a, e, k)) = eval(b, e′[x 7→ (a, e)], k)

Our initial continuation is now IK = CONT I: eval(t, em, IK).

6 Abstract state machine

Let us now turn our defunctionalized evaluated into an abstract state machine
(a variant of Kivine’s machine [1] that uses names instead of De Bruijn indices),
where the environment part is our heap and the continuation part is our stack.

s ∈ State ::= EVAL

| APPLY CONT

Here is a simple abstract machine of type (State×Term×Env×Cont) → VClosure:

2



loop(EVAL, x, e, k) = let (t, e′) = e(x) in loop(EVAL, t, e′, k)
loop(EVAL, λx.t, e, k) = loop(APPLY CONT, λx.t, e, k)
loop(EVAL, fa, e, k) = loop(EVAL, f, e, CONT LAM(a, e, k))
loop(APPLY CONT, t, e, CONT I) = (t, e)
loop(APPLY CONT, λx.b, e′, CONT LAM(a, e, k)) = loop(EVAL, b, e′[x 7→ (a, e)], k)

Let’s get rid of State and inline the APPLY CONT cases. We also turn our contin-
uations into a list where CONT I is now the empty list [] and CONT LAM is turned
into the list constructor “::”:

loop(t, e, []) = (t, e)
loop(x, e, l) = let (t, e′) = e(x) in loop(t, e′, l)
loop(λx.t, e, l) = match l with

| [] ⇒ (λx.t, e)
| (a, e′) :: l ⇒ loop(b, e[x 7→ (a, e′)], l)
end

loop(fa, e, l) = loop(EVAL, f, e, (a, e) :: l)

References

[1] Jean-Louis Krivine. A call-by-name lambda-calculus machine. Higher-Order

and Symbolic Computation, 20(3):199–207, 2007.

3


	Object language
	Simple evaluator using substitution
	Closure conversion
	CPS transformation
	Defunctionalization
	Abstract state machine

