Continuations

Vincent Rahli (rahli@cs.cornell.edu)
CS6110 Lecture 12
Wednesday Feb 18, 2015

1 Object language

Let our object language be:

2 Simple evaluator using substitution

The following eval function is of type Term \rightarrow Term (it is actually a partial function because it can get stuck in the application case, or it can diverge):

```
\(\operatorname{eval}(x)=x\)
\(\operatorname{eval}(\underline{\lambda} x . t)=\underline{\lambda} x . t\)
\(\operatorname{eval}(f a)=\) let \(\underline{\lambda} x \cdot b=\operatorname{eval}(f)\) in \(\operatorname{eval}(b[x \backslash a])\)
```


3 Closure conversion

This evaluator is of type (Term \times Env) \rightarrow (Value \times Env), where Env $=$ Var \rightarrow (Term \times Env) and where Value is the type of values-a subtype of Term:

$$
\begin{aligned}
& \operatorname{eval}(x, e)= \\
& \operatorname{let}\left(t, e^{\prime}\right)=e(x) \text { in } \operatorname{eval}\left(t, e^{\prime}\right) \\
& \operatorname{eval}(\underline{\lambda} x \cdot t, e)=(\underline{\lambda} x \cdot t, e) \\
& \operatorname{eval}(f a, e)= \operatorname{let}\left(\underline{\lambda} x \cdot b, e^{\prime}\right)=\operatorname{eval}(f, e) \text { in } \\
& \quad \operatorname{eval}\left(b, e^{\prime}[x \mapsto(a, e)]\right)
\end{aligned}
$$

Given a term t, we evaluate t by first initializing the environment to em (the empty environment λx.error $)$: eval $(t$, em $)$.

4 CPS transformation

This evaluator is of type (Term \times Env \times Cont) \rightarrow VClosure, where Cont $=$ VClosure \rightarrow VClosure and VClosure $=$ Value \times Env:

$$
\begin{array}{ll}
\operatorname{eval}(x, e, k) & =\operatorname{let}\left(t, e^{\prime}\right)=e(x) \operatorname{in} \operatorname{eval}\left(t, e^{\prime}, k\right) \\
\operatorname{eval}(\underline{\lambda} x \cdot t, e, k) & =k(\underline{\lambda} x \cdot t, e) \\
\operatorname{eval}(f a, e, k) & =\operatorname{eval}\left(f, e, k^{\prime}\right), \text { where } k^{\prime}=\lambda\left(\underline{\lambda} x \cdot b, e^{\prime}\right) \cdot \operatorname{eval}\left(b, e^{\prime}[x \mapsto(a, e)], k\right)
\end{array}
$$

The continuation k^{\prime} says what the evaluator is supposed to do once f has been evaluated to a value. What k^{\prime} does is that it takes as input a closure of the form (v, e^{\prime}) and checks whether v is a $\underline{\lambda}$-expression of the form $\underline{\lambda} x . b$. If it's not then the computation gets stuck because we don't get a β-redex. Otherwise the continuation says that as before, we have to keep evaluating the body b of the $\underline{\lambda}$-expression, where x now gets bound to the argument (a, e). This amounts to doing β-reduction.

Our initial continuation is simply the identity function $I \mathrm{~K}=\lambda x \cdot x: \operatorname{eval}(t, \mathrm{em}, \mathrm{IK})$.

5 Defunctionalization

Continuations are not encoded by a datatype:

$$
\begin{array}{rll}
k \in \quad \text { CONT }::= & \text { CONT_I } \\
& \text { CONT_LAM of Term } \times \text { Env } \times \text { Cont }
\end{array}
$$

This evaluator is of type (Term \times Env \times CONT) \rightarrow VClosure:

$$
\begin{array}{ll}
\operatorname{eval}(x, e, k) & =\operatorname{let}\left(t, e^{\prime}\right)=e(x) \operatorname{in} \operatorname{eval}\left(t, e^{\prime}, k\right) \\
\operatorname{eval}(\underline{\lambda} x \cdot t, e, k) & =\operatorname{apply} \operatorname{cont}(\underline{\lambda} x \cdot t, e, k) \\
\operatorname{eval}(f a, e, k) & =\operatorname{eval}(f, e, \operatorname{CONT} \operatorname{LAM}(a, e, k))
\end{array}
$$

Where apply_cont (of type (Value \times Env \times CONT) \rightarrow VClosure) is defined as follows:

$$
\begin{array}{ll}
\operatorname{apply} _c o n t \\
(t, e, \text { CONT_I }) & =(t, e) \\
\operatorname{apply_ cont}\left(\underline{\lambda} x \cdot b, e^{\prime}, \operatorname{CONT} \operatorname{LAM}(a, e, k)\right) & =\operatorname{eval}\left(b, e^{\prime}[x \mapsto(a, e)], k\right)
\end{array}
$$

Our initial continuation is now $I K=\operatorname{CONT} I: \operatorname{eval}(t, \mathrm{em}, \mathrm{IK})$.

6 Abstract state machine

Let us now turn our defunctionalized evaluated into an abstract state machine (a variant of Kivine's machine [1] that uses names instead of De Bruijn indices), where the environment part is our heap and the continuation part is our stack.

$$
\begin{aligned}
s \in \text { State }::= & \text { EVAL } \\
& \mid \text { APPLY_CONT }
\end{aligned}
$$

Here is a simple abstract machine of type (State \times Term \times Env \times Cont) \rightarrow VClosure:

```
loop(EVAL, x,e,k) = let (t, e')=e(x) in loop(EVAL,t, e}\mp@subsup{e}{}{\prime},k
loop(EVAL, }\underline{\lambda}x.t,e,k) = loop(APPLY_CONT, \underline{\lambda}x.t,e,k
loop(EVAL,fa,e,k) = loop(EVAL,f,e, CONTLAMM (a,e,k))
loop(APPLY_CONT, t,e,CONT_I) = (t,e)
loop(APPLY_CONT, \underline{\lambda}x.b,\mp@subsup{e}{}{\prime},\operatorname{CONT}LAM}(a,e,k))=|loop(EVAL,b,\mp@subsup{e}{}{\prime}[x\mapsto(a,e)],k
```

Let's get rid of State and inline the APPLY_CONT cases. We also turn our continuations into a list where CONT_I is now the empty list [] and CONT_LAM is turned into the list constructor "::":

```
\(\operatorname{loop}(t, e,[])=(t, e)\)
\(\operatorname{loop}(x, e, l)=\operatorname{let}\left(t, e^{\prime}\right)=e(x)\) in \(\operatorname{loop}\left(t, e^{\prime}, l\right)\)
\(\operatorname{loop}(\underline{\lambda} x . t, e, l)=\) match \(l\) with
    \(\mid[] \Rightarrow(\underline{\lambda} x . t, e)\)
    \(\mid\left(a, e^{\prime}\right):: l \Rightarrow \operatorname{loop}\left(b, e\left[x \mapsto\left(a, e^{\prime}\right)\right], l\right)\)
    end
\(\operatorname{loop}(f a, e, l)=\operatorname{loop}(\operatorname{EVAL}, f, e,(a, e):: l)\)
```


References

[1] Jean-Louis Krivine. A call-by-name lambda-calculus machine. Higher-Order and Symbolic Computation, 20(3):199-207, 2007.

