1 Computable functions

Fig. la.

Inp‘lt + OUtPUt

Black box

calculating machine, a computer, or a schoolboy correctly taught —or
even a very clever dog trained appropriately. The algorithm is the
procedure or method that is carried out by the black box to obtain the
output from the input.

When an algorithm or effective procedure is used to calculate the
values of a numerical function then the function in question is described
by phrases such as effectively calculable, or algorithmically computable, or
effectively computable, or just computable. For instance, the functions xy,
HCF(x, y) = the highest common factor of x and y, and f (n) =the nth
prime number, are computable in this informal sense, as already
indicated. Consider, on the other hand, the following function:

1 if there is a run of exactly n consecutive 7s
g(n)= in the decimal expansion of r,

0 otherwise.
Most mathematicians would accept that g is a perfectly legitimate
function. But is g computable? There is a mechanical procedure for
generating successive digits in the decimal expansion of ' so the
following ‘procedure’ for computing g suggests itself.

‘Given n, start generating the decimal expansion of , one digit at a
time, and watch for 7s. If at some stage a run of exactly n consecutive 7s
has appeared, then stop the process and put g(n) = 1. If no such sequence
of 7s appears put g(n)=0.’

The problem with this ‘procedure’ is that, if for a particular n there is no
sequence of exactly n consecutive 7s, then there is no stage in the process
where we can stop and conclude that this is the case. For all we know at
any particular stage, such a sequence of 7s could appear in the part of the
expansion of 7 that has not yet been examined. Thus the ‘procedure’ will
go on for ever for inputs n such that g(n)=0j; so it is not an effective
procedure. (It is conceivable that there is an effective procedure for
computing g based, perhaps, on some theoretical properties of . At the

present time, however, no such procedure is known.)

! This will be established in chapter 3 (example 7.1(3)).

2 The unlimited register machine

This example pinpoints two features implicit in the idea of an effective
procedure — namely, that such a procedure is carried out in a sequence of
stages or steps (each completed in a finite time), and that any output
should emerge after a finite number of steps.

So far we have described informally the idea of an algorithm, or
effective procedure, and the associated notion of computable function.
These ideas must be made precise before they can become the basis for a
mathematical theory of computability — and non-computability.

We shall make our definitions in terms of a simple ‘idealised computer’
that operates programs. Clearly, the procedures that can be carried out by
a real computer are examples of effective procedures. Any particular real
computer, however, is limited both in the size of the numbers that it can
receive as input, and in the amount of working space available; it is in
these respects that our ‘computer’ will be idealised in accordance with the
informal idea of an algorithm. The programs for our machine will be
finite, and we will require that a completed computation takes only a

finite number of steps. Inputs and outputs will be restricted to natural
numbers; this is not a significant restriction, since operations involving
other kinds of object can be coded as operations on natural numbers. (We

discuss this more fully in § 5.)

b 2. The unlimited register machine
Our mathematical idealisation of a computer is called an
* unlimited register machine (URM); it is a slight variation of a machine

- The URM has an infinite number of registers labelled Ry, R, Rs, . . .,
ich of which at any moment of time contains a natural number; we
Note the number contained in R, by r,. This can be represented as
lows

Rl R2 R3 R4 R5 RG R7

Fa | r3s | ra | rs | re | I7

- . .
inntents of the registers may be altered by the URM in response to
N ins j : . s ;

- pltructzons that it can recognise. These instructions correspond to

. PI€ operations used in performing calculations with numbers. A

St of i - : . .
nstructions constitutes a program. The instructions are of four
follows.

1 Computable functions 10

Zero instructions For each n = 1,2,3,... there is a zero instruction
Z(n). The response of the URM to the instruction Z(n) is to change the
contents of R, to 0, leaving all other registers unaltered.

Example Suppose that the URM is in the following
configuration
R; R, R; R; Rs 5

91 6 SU 230107 N0

and obeys the zero instruction Z(3). Then the resulting configuration is

*) 916 | 0|23 (7|0

The response of the URM to a zero instruction Z(n) is denoted by0O->R,,
or r, = 0 (this is read r, becomes 0).

Successor instructions For each n =1,2,3,... there is a successor
instruction S(n). The response of the URM to the instruction S(n) is to
increase the number contained in R, by 1, leaving all other registers

unaltered.

Example Suppose that the URM is in the configuration (*)
above and obeys the successor instruction S(5). Then the new con-
figuration is

R R; R; R; Rs Rg

(**) 916 |0 (23] 8]0

The effect of a successor instruction S(n) is denoted by r,+1->R,, or
I =r,+1 (r, becomesr,+1).

Transfer instructions For each m = 1,2,3,...andn=1,2,3,...theie
is a transfer instruction T(m, n). The response of the URM to the
instruction T(m, n) is to replace the contents of R,, by the number 7m
contained in R,, (i.e. transfer r,, into R,); all other registers (including
R,.) are unaltered.

Example Suppose that the URM is in the configuration (**)

above and obeys the transfer instruction T(5, 1). Then the resulting

2 The unlimited register machine 11

configuration is
R1 R2 R 3 R4 RS R6

8 | 6 | 0|23 |8 0

The response of the URM to a transfer instruction T(m, n) is denoted by

I = Ry, OF 1y = 1y (1, becomes rp,).

Jump instructions In the operation of an informal algorithm there may
be a stage when alternative courses of action are prescribed, depending
on the progress of the operation up to that stage. In other situations it may
be necessary to repeat a given routine several times. The URM is able to
reflect such procedures as these using jump instructions ; these will allow
jumps backwards or forwards in the list of instructions. We shall, .for
example, be able to use a jump instruction to produce the following

response:
‘If r, = re, go to the 10th instruction in the program; otherwise, go

on to the next instruction in the program.’

The instruction eliciting this response will be written J(2, 6, 10).

Generally, foreachm=1,2,3,...,n=1,2,3,...andq=1,2,3, ...
there is a jump instruction J(m, n, q). The response of the URM to the
instruction J(m, n,q) is as follows. Suppose that this instruction is
encountered in a program P. The contents of R,, and R, are compared,
but all registers are left unaltered. Then
if r,,, = r,,, the URM proceeds to the gth instruction of P;
if r,,, # r,, the URM proceeds to the next instruction in P.

the jump is impossible because P has less than g instructions, then the
\M stops operation.

€I0, successor and transfer instructions are called arithmetic instruc-

= Summarise the response of the URM to the four kinds of instruc-
n table 1.

Blations To perform a computation the URM must be provided
' Program P and an initial configuration —i.e. a sequence
“3-.. of natural numbers in the registers Ry, Ry, Rj,. ...
that P consists of ¢ instructions I, I, . . . , I, The URM begins

tation by obeying I, then I, I, and so on unless a jump

1 Computable functions 12

Table 1

Type of instruction Instruction Response of the URM

Zero Z(n) Replace r, by 0. (0->R,, or r, :=0)

Successor S(n) Add1tor,. (r,+1>R,orr,:=r,+
1)

Transfer T(m, n) Replace r, by 7,,.. (r,, > R,,0rr, :=r,,)

Jump J(m, n, q) If r,, = r,, jump to the gth instruction;

otherwise go on to the next instruc-
tion in the program.

instruction, say J(m, n, q), is encountered. In this case the URM proceeds
to the instruction prescribed by J(m, n, q) and the current contents of the
registers R,, and R,. We illustrate this with an example.

2518 Example

Consider the following program:

I J(1,2,6)

L SQ)

I S(3) ~
L J(1,2,6)

I JLLD

Is T(3,1)

Let us consider the computation by the URM under this program with
initial configuration

R: R;
9 7 0 010

R3 R4 Rs

(We are not concerned at the moment about what function this program
actually computes; we wish to illustrate the way in which the URM
operates programs in a purely mechanical fashion without needing t©
understand the algorithm that is being carried out.)

We can represent the progress of the computation by writing down the
successive configurations that occur, together with the next instruction t0
be obeyed at the completion of each stage.

2 The unlimited register machine 13

R; R, R;3 R; R;s Next instruction
Initial
config- | 9 7 0 0 0 AU £
uration

I, (since ri # r2)

9 8 | 0 00 I;

9 8 1 0] 0 I,

Is (since r1 #ra)

9 8 1 0 0 I, (since ri=r1)

and so on. (We shall continue this computation later.)

We can describe the operation of the URM under a program P =
I, L, ..., I in general as follows. The URM starts by obeying instruc-
tion I;. At any future stage in the computation, suppose that the URM is
obeying instruction I,. Then having done so it proceeds to the next
instruction in the computation, defined as follows:

if I, is not a jump instruction, the next instruction is Ij+1;
ifr,=r;

: .. L
if I, = J(m, n, q) the next instruction is { : .
r+1 Otherwise,

Where r,,, r, are the current contents of R,, and R,.

The URM proceeds thus as long as possible; the computation stops

ien, and only when, there is no next instruction; i.e. if the URM has just

3 yed instruction I, and the ‘next instruction in the computation’
"d_ing to the above definition is I, where v > s. This can happen in the

OWIng ways:

(i) if k = 5 (the last instruction in P has been obeyed) and I, is an

arithmetic instruction,

(") if I, =J(m, n, q), rm =r, and g >s,

(i) if I = J(m, n, q), r,, # 1, and k =s5.

Yr‘:h'en .that the computation stops after instruction I,; the final
sUration is the sequence ri, r2, I3, . . . , the contents of the registers at

	Scanned Document_20150427133550
	Scanned Document_20150427133718
	Scanned Document_20150427133737

