
1 0 Techniques for recursion 

This chapter provides techniques for proving properties of least fixed points of continuous 
functions. The characterisation of least fixed points as least prefixed points gives one 
method sometimes called Park induction. It is used to establish Bekic's Theorem, an 
important result giving different methods for obtaining least fixed points in products of 
cpo's. The general method of Scott's fixed-point induction is introduced along with the 
notion of inclusive property on which it depends; methods for the construction of inclusive 
properties are provided. A section gives examples of the use of well-founded induction 
extending our earlier work and, in particular, shows how to build-up well-founded rela­
tions. A general method called well-founded recursion is presented for defining functions 
on sets with a well-founded relation. The chapter concludes with a small but nontrivial 
exercise using several of the techniques to show the equality of two recursive functions 
on lists. 

10.1 Bekic's Theorem 

The Fixed-Point Theorem, Theorem 5.11, of Chapter 5 tells us that if D is a cpo with 
..l and F : D --> D is continuous then jix( F) is the least prefixed point of F. In other 
words, 

F(d) r;::: d =? jix(F) r;::: d 

for any d ED. Of course, fix(F) is a fixed point, i.e. 

F(jix(F)) = jix(F) 

(fixl) 

(fix2) 

Facts (fixl) and (fix2) characterise jix(F), and are useful in proving properties of fixed 
points generallyl The fact (fixl) states a principle of proof sometimes called Park in­
duction, after David Park. We will use (fixl) and (fix2) to establish an interesting result 
due to Bekic. Essentially, BekiC's Theorem says how a simultaneous recursive definition 
can be replaced by recursive definitions of one coordinate at a time. 

Theorem 10.1 (Bekic) 
Let F : D x E --> D and G : D x E --> E be continuous functions where D and E are 
cpo's with bottom. The least jixed point of (F, G) : D x E --> D x E is the pair with 
coordinates 

j p,f. F(f,p,g. G(p,f. F(f,g),g)) 

9 p,g. G(p,f. F(f,g),g) 

lin fact, because F is monotonic (fix2) could be replaced by F(fix(F)) [;;; fix(F). Then by mono­
tonicity, we obtain F(F(fix(F))) [;;; F(fix(F)), i.e. F(fix(F)) is a prefixed point. Now from (fixl) we get 
fix(F) I:;: F(fix(F)) which yields (fix2) . 
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Proof: We first show (j, g) is a fixed point of (F, G). By definition 

j = ~f. F(f, g). 

Chapter 10 

In other words j is the least fixed point of Af. F(f, g). Therefore j = F(j, g). Also, 
from the definition of g, 

9 = G(~f. F(f,g), g) = G(j,g). 

Thus (}, g) = (F, GHj, g) i.e. (j, g) is a fixed point of (F, G). 
Letting (fo, go) be the least fixed point of (F, G) we must have 

10 [::; j and go [::; g. 

We require the converse orderings as well. As 10 = F(fo, go), 

~f. F(f, go) [::; 10· 

By the monotonicity of G 

G(~f. F(f, go), go) ~ G(fo, go) = go· 

Therefore 

9 [::; go 

as 9 is the least prefixed point of Ag. G(~f. F(f,g),g). 
By the monotonicity of F, 

F(fo, g) [::; F(fo, go) = 10· 

Therefore 
j [::; 10 

as j is the least prefixed point of Af. F(f, g). 
Combining (I), (2), (3) we see (j,g) = (fo,go), as required. 

(1) 

(2) 

(3) 

o 

The proof only relied on monotonicity and the properties of least fixed points expressed 
by (fix1) and (fix2) above. For this reason the same argument carries over to the situation 
of least fixed points of monotonic functions on lattices (see 5.5). 

BekiC's Theorem gives an asymmetric form for the simultaneous least fixed point. We 
can deduce a symmetric form as a corollary: the simultaneous least fixed point is a pair 

j = ~f. F(f, M·G(f, g» 
9 = M· G(~f.F(f,g), g) 

To see this notice that the second equation is a direct consequence of BekiC's Theorem 
while the first follows by the symmetry there is between 1 and g. 
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Example: We refer to Section 9.8 where it is indicated how to extend REC to allow 
local declarations. Consider the term 

T == let rec B ~ (let rec A ~ t in u) 
in (let rec A ~ t in v). 

where A and B are assumed to be distinct function variables of arity o. Let p, rp be 
arbitrary variable and function-variable environments. Abbreviate 

F(f,g) = [t]rp[J/A,g/Blp 

G(f,g) = [u]rp[J/A,g/Blp 

From the semantics we see that 

where 

and 

[T]rpp = [v]rp[j / A, g/ Blp 

g J.Lg. [let rec A ~ tin u]rp[g/ Blp 
J.Lg. [u]rp[g/ B, J.Lf. [t]rp[J / A, g/ Blp/Alp 
J.Lg. G(J.Lf.F(f, g), g). 

j = J.Lf. [t]rp[J/A,g/Blp 

= J.Lf. F(f,.9). 

By BekiC's Theorem this means (j,g) is the (simultaneous) least fixed point of (F,G). 
consequently we could have achieved the same effect with a simultaneous declaration; we 
have 

[T] = [let rec A ~ t and B ~ u in v]. 

The argument is essentially the same for function variables taking arguments by either 
call-by-name or call-by-value. Clearly Bekic's Theorem is crucial for establishing program 
equivalences between terms involving simultaneous declarations and others. 0 

Exercise 10.2 Generalise and state Bekic's Theorem for 3 equations. 0 

Exercise 10.3 Let D and E be cpo's with bottom. Prove that if f D -+ E and 
9 : E -+ D are continuous functions on cpo's D, E then 

fix(g 0 f) = g(fix(f 0 g)). 

(Hint: Use facts (fixl) and (fix2) above.) o 
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10.2 Fixed-point induction 

Often a property can be shown to hold of a least fixed point by showing that it holds for 
each approximant by mathematical induction. This was the case, for example, in Chapter 
5 where, in the proof of Theorem 5.7, stating the equivalence between operational and 
denotational semantics, the demonstration that 

(1, (1') E CITc] =? (c, (1) -t (1', 

for states (1, (1', in the case where the command c was a while-loop, was achieved by 
mathematical induction on the approximants of its denotation. In this case it was obvious 
that a property holding of all the approximants of a least fixed point implied that it held 
of their union, the fixed point itself. This need not be the case for arbitrary properties. 

As its name suggests fixed-point induction, a proof principle due to Dana Scott, is 
useful for proving properties of least fixed points of continuous functions. Fixed-point 
induction is a proof principle which essentially replaces a mathematical induction along 
the approximants FnCl) of the least fixed point Un Fn(..1.) of a continuous function 
F. However, it is phrased in such a way as to avoid reasoning about the integers. It 
only applies to properties which are inclusive; a property being inclusive ensures that its 
holding of all approximants to a least fixed point implies that it holds of the fixed point 
itself. 

Definition: Let D be a cpo. A subset P of D is inclusive iff for all w-chains do r:;;: d1 r:;;: 

... r:;;: dn r:;;: ... in D if dn E P for all nEw then UnEw dn E P. 

The significance of inclusive subsets derives from the principle of proof called fixed-point 
induction. It is given by the following proposition: 

Proposition 10.4 (Fixed-point induction-Scott) 
Let D be a cpo with bottom ..1., and F : D -t D be continuous. Let P be an inclusive 
subset of D. If..1. E P and t/x E D. x E P =? F(x) E P then fix(F) E P. 

Proof: We have fix(F) = Un Fn(..1.). If P is an inclusive subset satisfying the condition 
above then ..1. E P hence F(..1.) E P, and inductively Fn(..1.) E P. As we have seen, by 
induction, the approximants form an w-chain 

whence by the inclusiveness of P, we obtain fix(F) E P. o 
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Exercise 10.5 What are the inclusive subsets of n? Recall n is the cpo consisting of: 

o 

Exercise 10.6 A Scott-closed subset of a cpo is the complement of a Scott-open subset 
(defined in Exercise 8.4). Show a Scott-closed subset is inclusive. Exhibit an inclusive 
subset of a cpo which is not Scott-closed. 0 

As a first, rather easy, application of fixed-point induction we show how it implies Park 
induction, discussed in the last section: 

Proposition 10.7 Let F : D --+ D be a continuous function on a cpo D with bottom. 
Let d ED. If F(d) ~ d then fix(F) ~ d. 

Proof: (via fixed-point induction) 
Suppose d E D and F(d) ~ d. The subset 

P = {x E D I x ~ d} 

is inclusive-if each element of an w-chain do ~ ... ~ dn ~ ... is below d then certainly 
so is the least upper bound Un dn . Clearly J.. ~ d, so J.. E P. We now show x E P * 
F(x) E P. Suppose x E P, i.e. x ~ d. Then, because F is monotonic, F(x) ~ F(d) ~ d. 
So F(x) E P. By fixed-point induction we conclude fix(F) E P, i.e. fix(F) ~ d, as 
required. o 

Of course, this is a round-about way to show a fact we know from the Fixed-Point 
Theorem. It does however demonstrate that fixed-point induction is at least as strong 
as Park induction. In fact fixed-point induction enables us to deduce properties of least 
fixed points unobtainable solely by applying Park induction. 

A predicate Q(XI, ... ,Xk) with free variables Xl, ... ,Xk, ranging over a cpo's D I, ... , Dk 
respectively, determines a subset of DI x ... X Dk, viz.the set 

and we will say the predicate Q(Xl, ... , Xk) is inclusive if its extension as a subset of the 
cpo Dl x ... X Dk is inclusive. As with other induction principles, we shall generally use 
predicates, rather than their extensions as sets, in carrying out a fixed-point induction. 
Then fixed-point induction amounts to the following statement: 
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Let F : Dl x ... X Dk --+ Dl X ... X Dk be a continuous function on a product cpo 
Dl x··· X Dk with bottom element (.1.. 1, ... , .1..k)' Assuming Q(Xl,"" Xk) is an inclusive 
predicate on Dl x ... X Dk, 

if Q(.1.. l , ... , .1..k) and 

'r/Xl E D l ,'" ,Xk E Dk. Q(Xl, ... , Xk) => Q(F(Xl,"" Xk» 

then Q(fix(F». 

Fortunately we will be able to ensure that a good many sets and predicates are inclusive 
because they are built-up in a certain way: 

Basic relations: Let D be a cpo. The binary relations 

{ (x, y) E D x D I x [;;; y} and {(x, y) E D x D I x = y} 

are inclusive subsets of D x D (Why?). It follows that the predicates 

x [;;; y, x=y 

are inclusive. 

Inverse image and substitution: Let f : D --+ E be a continuous function between 
cpo's D and E. Suppose P is an inclusive subset of E. Then the inverse image 

r l P = {x E D I f(x) E P} 

is an inclusive subset of D. 
This has the consequence that inclusive predicates are closed under the substitution of 

terms for their variables, provided the terms substituted are continuous in their variables. 
Let Q(Yl, ... , Yl) be an inclusive predicate of E 1 x ... X E l . In other words, 

is an inclusive subset of El x ... X E1. Suppose el,"" el are expressions for elements of 
E l , ... , El, respectively, continuous in their variables Xl, ... , Xk ranging, in order, over 
Dl , ... , Dk-taking them to be expressions in our metalanguage of Section 8.4 would 
ensure this. Then, defining f to be 

ensures f is a continuous function. Thus f- 1 P is an inclusive subset of Dl x ... X Dk. 
But this simply means 
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is an inclusive subset, and thus that Q (e 1, ... , el) is an inclusive predicate of D 1 X ... x D k. 

For instance, taking f = .Ax E D. (x, c) we see if R(x, y) is an inclusive predicate of 
D x E then the predicate Q(x) {=> defR(x, c), obtained by fixing y to a constant c, 
is an inclusive predicate of D. Fixing one or several arguments of an inclusive predicate 
yields an inclusive predicate. 

Exercise 10.8 Show that if Q(x) is an inclusive predicate of a cpo D then 

R(x, y) {=> defQ(x) 

is an inclusive predicate of D x E, where the extra variable y ranges over the cpo E. 
(Thus we can "pad-out" inclusive predicates with extra variables. Hint: projection 
function.) 0 

Logical operations: Let D be a cpo. The subsets D and 0 are inclusive. Consequently 
the predicates "true" and "false", with extensions D and 0 respectively, are inclusive. 
Let P ~ D and Q ~ D be inclusive subsets of D. Then 

PuQ and pnQ 

are inclusive subsets. In terms of predicates, if P(Xl, ... ,Xk) and Q(Xl, ... ,Xk) are 
inclusive predicates then so are 

If Pi, i E I, is an indexed family of inclusive subsets of D then niEI Pi is an inclusive 
subset of D. Consequently, if P(Xl, ... ,Xk) is an inclusive predicate of Dl x ... X Dk 
then 't/Xi E Di. P(Xl, ... , Xk), with 1 SiS k, is an inclusive predicate of D. This is 
because the corresponding subset 

equals the intersection, 

n ((Xl, ... ,Xi-l,Xi+!, ... ,Xk) E Dl x ···Di - 1 X DHI X ... X Dk 
dEDi 

P(Xl' ... , Xi-I, d, XHl, ... ,Xk)} 

of inclusive subsets---each predicate P(XI, ... , Xi-I, d, Xi+! , ... , xd, for dEDi, is inclu­
sive because it is obtained by fixing one argument. 

However, note that infinite unions of inclusive subsets need not be inclusive, and 
accordingly, that inclusive predicates are not generally closed under 3-quantification. 
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Exercise 10.9 
(i) Provide a counter example which justifies the latter claim. 
(ii) Show that the direct image f P of an inclusive subset P ~ D, under a continuous 
function f : D -+ E between cpo's, need not be an inclusive subset of E. 
(iii) Also, provide examples of inclusive subsets P ~ D x E and Q ~ E x F such that 
their relation composition 

Q 0 P =def {(d, f) I 3e E E. (d, e) E P&(e, f) E Q} 

is not inclusive. 
(Hint for (iii): Take D to be the singleton cpo {T}, E to be the discrete cpo of nonnegative 
integers wand F to be the cpo n consisting of an w-chain together with its least upper 
bound 00.) 0 

Athough the direct image of an inclusive subset under a general continuous function 
need not be inclusive, direct images under order-manics necessarily preserve inclusiveness. 
Let D, E be cpo's. A continuous function f : D -+ E is an order-monic iff 

f(d) ~ f(d') => d ~ d' 

for all d, d' E D. Examples of order-monics include the "lifting" function l- J and injec­
tions ini associated with a sum. It is easy to see that if P is an inclusive subset of D 
then so is its direct image fP when f is an order-monic. This means that if Q(x) is an 
inclusive predicate of D then 

3x E D. y = f(x) & Q(x), 

with free variable y E E, is an inclusive predicate of E. 

Now we can consider inclusive subsets and predicates associated with particular cpo's 
and constructions on them: 

Discrete cpo's: Any subset of a discrete cpo, and so any predicate on a discrete cpo, 
is inclusive. 

Products: Suppose Pi ~ Di are inclusive subsets for 1 :s; i :s; k. Then 

is an inclusive subset of the product Dl x ... X D k . This follows from our earlier results, 
by noting 
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Each inverse image nil Pi is inclusive, for i = 1, ... , k, and therefore so too is their 
intersection. 
Warning: Let Db ... ,Dk be cpo's. It is tempting to believe that a predicate P(x 1, ... ,Xk), 
where Xl E D 1 ,···, Xk E Dk, is an inclusive predicate of the product Dl x ... X Dk if 
it is an inclusive predicate in each argument separately. This is not the case however. 
More precisely, say P(Xl, . .. ,Xk) is inclusive in each argument separately, if for each 
i = 1, ... , k, the predicate P(d l , ... ,di- l , Xi, di+l' ... , dk ), got by fixing all but the ith 
argument, is an inclusive predicate of D i . Certainly if P(Xl, .. . , Xk) is inclusive then it 
is inclusive in each argument separately-we can substitute constants for variables and 
preserve inclusiveness from the discussion above. The converse does not hold however. 
The fact that P(Xl, ... , Xk) is inclusive in each argument separately does not imply that 
it is an inclusive predicate of Dl x ... X D k . 

Exercise 10.10 Let n be the cpo consisting of w together with 00 ordered: 

By considering the predicate 

P(X,y) <==> def(x=y&xi=oo) 

show that a predicate being inclusive in each argument separately does not imply that 
it is inclusive. 0 

Function space: Let D and E be cpo's. Suppose P ~ D, and Q ~ E is an inclusive 
subset. Then 

P -t Q =def {f E [D -t Ell \:Ix E P. f(x) E Q} 

is an inclusive subset of the function space [D -t EJ (Why?). Consequently, the predicate 
\:Ix E D.P(x) :::::} Q(J(x)), with free variable f E [D -t EJ, is inclusive when P(x) is a 
predicate of D and Q(y) is an inclusive predicate of E. 

Lifting: Let P be an inclusive subset of a cpo D. Because the function L -J is an order­
monic, the direct image L P J = {l d J IdE P} is an inclusive subset of D.l.. If Q( x) is an 
inclusive predicate of D then 

::Ix E D. y = LxJ & Q(x), 

with free variable y E D.l., is an inclusive predicate of D.l.. 

Sum: Let Pi be an inclusive subset of the cpo Di for i = 1, ... , k. Then 
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is an inclusive subset of the sum DI + ... + Dk. This follows because each injection is an 
order-monic so each iniPi is inclusive, and the finite union of inclusive sets is inclusive. 
Expressing the same fact using predicates we obtain that the predicate 

with free variable y E Dl + ... + Dk, is an inclusive predicate of the sum if each Qi(Xi) 
is an inclusive predicate of the component D i. 

The methods described above form the basis of a a language of inclusive predicates. 
Provided we build up predicates from basic inclusive predicates using the methods ad­
mitted above then they are guaranteed to be inclusive. For example, any predicate 
built-up as a universal quantification over several variables of conjunctions and disjunc­
tions of basic predicates of the form e 1 ~ e2 for terms el, e2 in our metalanguage will be 
inclusive. 

Proposition 10.11 Any predicate of the form 

is inclusive where Xl, ... ,Xn are variables ranging over specific cpo's, and P is built up 

by conjunctions and disjunctions of basic predicates of the form e 0 ~ el or eo = el, where 

eo and el are expressions in the metalanguage of expressions from Section 8.4. 

Unfortunately, such syntactic means fail to generate all the predicates needed in proofs 
and the manufacture of suitable inclusive predicates can become extremely difficult when 
reasoning about recursively defined domains. 

Example: Let T.L be the usual complete partial order of truth values {true, false} .L. 
Abbreviate ltrueJ to tt and lfalseJ to ff. Let p: D ---> T.L and h : D ---> D be continuous 
with h strict (i. e. h(..l) = ..l). Let f : D x D ---> D be the least continuous function such 
that 

f(x, y) = p(x) ---> y I h(f(h(x), y)) 

for all X, y E D. We prove 

(i) h(b ---> die) = b ---> h(d)lh(e) for all bET.L and d, e E D, and 
(ii) h(f(x, y)) = f(x, h(y)) for all X, y E D. 

Part (i) follows easily by considering the three possible values ..l, tt, ff for bET .L. 
If b =..l then h(b ---> die) = h(..l) = ..l = b ---> h(d)lh(e) 

If b = tt then h(b ---> die) = h(d) = b ---> h(d)lh(e) 

If b = ff then h(b ---> die) = h(e) = b ---> h(d)lh(e) 
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Hence the required equation holds for all possible values of the boolean b. 

Part (ii) follows by fixed-point induction. An appropriate predicate is 

P(g) {o}deJ VX,y E D. h(g(x,y)) =g(x,h(y)) 

The predicate peg) is inclusive because it can be built-up by the methods described 
earlier. Because h is strict we see that P(..L) is true. To apply fixed-point induction we 
require further that 

peg) =? P(F(g)) 

where F(g) = .Ax, y. p(x) -> y I (h(g(h(x), V))· 
Assume peg). Let x, y E D. Then 

h«F(g))(x, V)) h(p(x) -> y I h(g(h(x), V))) 

p(x) -> hey) I h2(g(h(x), v)), by (i) 

p(x) -> hey) I h(g(h(x), hey))), by the assumption peg) 

(F(g))(x, hey)) 

Thus P(F(g)). Hence peg) =? p(F(g)). 
By fixed-point induction, we deduce P(fix(F)) i.e. P(J) i.e. 'Ix, y E D. h(J(x, y)) = 

f(x, hey)) as required. 0 

Exercise 10.12 Define h : N -> N.l recursively by 

hex) = hex) +.1 LIJ 

Show h = ..1, the always-..L function, using fixed-point induction. o 

Exercise 10.13 Let D be a cpo with bottom. Let p : D -> T.l be continuous and strict 
(i. e. p(..L) = ..L) and h : D -> D be continuous. Let f : D -> D to be the least continuous 
function which satisfies 

f(x) = p(x) -> x I f(J(h(x))) 

for all xED. Prove 
'Ix E D. f(J(x)) = f(x). 

(Hint:Take as induction hypothesis the predicate 

peg) ~ deJVX E D. f(g(x)) = g(X).) 

o 
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Exercise 10.14 Let h, k : D ~ D be continuous functions on a cpo D with bottom, 
with h strict. Let p : D ~ T 1- be a continuous function. Let f, 9 be the least continuous 
functions D x D ~ D satisfying 

f(x, y) = p(x) ~ y I h(f(k(x), y)) 

g(x, y) = p(x) ~ y I g(k(x), h(y)) 

for all x, y E D. Using fixed-point induction show f = g. 

(Hint: Regard the solutions as simultaneous fixed points and take the inclusive predicate 
to be 

P(f,g) {::::::::> de/'<:fx,y. [f(x,y) = g(x,y) & g(x,h(y)) = h(g(x,y))].) 

o 

It is probably helpful to conclude this section with a general remark on the use of fixed­
point induction. Faced with a problem of proving a property holds of a least fixed point 
it is often not the case that an inclusive property appropriate to fixed point induction 
suggests itself readily. Like induction hypotheses, or invariants of programs, spotting a 
suitable inclusive property frequently requires fairly deep insight. The process of obtain­
ing a suitable inclusive property can often make carrying out the actual proof a routine 
matter. It can sometimes be helpful to start by exploring the first few approximants 
to a least fixed point, with the hope of seeing a pattern which can be turned into an 
induction hypothesis. The proof can then be continued by mathematical induction on 
approximants (provided the property holding of each approximant implies it holds of the 
least fixed point), or, often more cleanly, by fixed-point induction (provided the property 
is inclusive). 

10.3 Well-founded induction 

Fixed-point induction is inadequate for certain kinds of reasoning. For example, suppose 
we want to show a recursively defined function on the integers always terminates on 
integer inputs. We cannot expect to prove this directly using fixed-point induction. To 
do so would involve there being an inclusive predicate P which expressed termination 
and yet was true of .1, the completely undefined function. An extra proof principle is 
needed which can make use of the way data used in a computation is inductively defined. 
An appropriate principle is that of well-founded induction. Recall from Chapter 3 that a 
well-founded relation on a set A is a binary relation ~ which does not have any infinite 
descending chains. Remember the principle of well-founded induction says: 
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Let -< be a well founded relation on a set A. Let P be a property. Then Va E A. P(a) 
iff 

Va E A. ([Vb -< a. P(b)] =?- P(a)). 

Applying the principle often depends on a judicious choice of well-founded relation. 
We have already made use of well-founded relations like that of proper subexpression on 
syntactic sets, or < on natural numbers. Here some well-known ways to construct further 
well-founded relations are given. Note that we use x j y to mean (x -< y or x = y). 

Product: If -<1 is well-founded on A1 and -<2 is well-founded on Az then taking 

determines a well-founded relation -<= (j \1 Al xA 2 ) in A1 x A2 . However product 
relations are not as generally applicable as those produced by lexicographic orderings. 

Lexicographic products: Let -<1 be well-founded on A1 and -<2 be well-founded on 
A2 . Define 

Inverse image: Let f : A -> B be a function and -<B a well-founded relation on B. 
Then -<A is well-founded on A where 

a -<A a' {:}dej f(a) -<B f(a') 

for a, a' EA. 

Exercise 10.15 Let -< be a well-founded relation on a set X such that -< is a total 
order. Show it need not necessarily satisfy 

{x E X I x -< y} 

is finite for all y EX. 
(A total order is a partial order:::; such that x :::; y or y :::; x for all its elements x, y.) 
(Hint: Consider the lexicographic product of < and < on w x w.) 0 

Exercise 10.16 Show the product, lexicographic product and inverse image construc­
tions do produce well-founded relations from well-founded relations. 0 

Example: A famous example is Ackermann's function which can be defined in REC by 
the declaration: 
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A(x, y) = if x then y + 1 else 
if y then A(x - 1,1) else 

A(x - 1, A(x, y - 1)) 

Under the denotational semantics for call-by-value, this declares A to have denotation 
the least function a in [N 2 ----> N.l] such that 

{ 
In + IJ 

a(m, n) = a(m - 1,1) 
let l ¢= a(m, n - 1). a(m - 1, l) 

if m = 0 
if m i- O,n = 0 
otherwise 

for all m, n E N. The fact that Ackermann's function a(m, n) terminates on all integers 
m, n :::: 0 is shown by well-founded induction on (m, n) ordered lexicographically. 0 

Exercise 10.17 Prove Ackermann's function a(m, n) terminates on all integers m, n :::: 0 
by well-founded induction by taking as induction hypothesis 

P(m,n) {c}dej (a(m,n) i- J.. and a(m,n):::: 0) 

for m,n:::: o. o 

Exercise 10.18 The 91 function of McCarthy is defined to be the least function in 
[N ----> N.l] such that 

f(x) = cond(x > 100, lx - 10J, let y ¢= f(x + 11). f(y))· 

(This uses the conditional of 8.3.5) 
Show this implies 

f(x) = cond(x > 100, lx -lOJ, 191J) 

for all nonnegative integers x. Use well-founded induction on w with relation 

n -< m {c} m < n S; 101, 

for n, mEw. First show -< is a well-founded relation. 

10.4 Well-founded recursion 

o 

In Chapter 3 we noticed that both definition by induction and structural induction allow a 
form of recursive definition, that the length of an arithmetic expression can, for instance, 
be defined recursively in terms of the lengths of its strict subexpressions; how the length 
function acts on a particular argument, like (al + a2) is specified in terms of how the 
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length function acts on strictly smaller arguments, like a 1 and a2. In a similar way 
we are entitled to define functions on an arbitrary well-founded set. Suppose B is a set 
with a well-founded relation -<. Definition by well-founded induction, called well-founded 
recursion, allows the definition of a function f from B by specifying its value feb) at an 
arbitrary b in B in terms of feb') for b' -< b. We need a little notation to state and justify 
the general method precisely. Each element b in B has a set of predecessors 

-<-1 {b} = {b' E Bib' -< b}. 

For any B' ~ B, a function f : B -> C restricts to a function f f B' : B' -> C by taking 

f f B' = {(b, feb)) I bE B'}. 

Definition by well-founded recursion is justified by the following theorem: 

Theorem 10.19 (Well-founded recursion) 

Let -< be a well-founded relation on a set B. Suppose F(b, h) E C, for all b E Band 
functions h : -< -1 {b} -> C. There is a unique function f : B -> C such that 

Vb E B. feb) = F(b,f H- 1 {b}). (*) 

Proof: The proof has two parts. We first show a uniqueness property: 

Vy -<* x. fey) = F(y,! f-<-l {v}) & g(y) = F(y,g H-1 {v}) 

'* f(x) = g(x), 

for any x E B. This uniqueness property P(x) is proved to hold for all x E B by well­
founded induction on -<: For x E B, assume P(z) for every z -< x. We require P(x). To 
this end suppose 

fey) = F(y,! f-<-l {v}) & g(y) = F(y,g H-1 {v}) 

for all y -<* x. If z -< x, then as P(z) we obtain 

fez) = g(z). 

Hence 

It now follows that 

f(x) = F(x,f H-1 {x}) = F(x,g H-1 {x}) = g(x). 
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Thus P(x). 
It follows that there can be at most one function I satisfying (*). We now show that 

there exists such a function. We build the function by unioning together a set of functions 
Ix : -(*-l{X} - C, for x E B. To show suitable functions exist we prove the following 
property Q(x) holds for all x E B by well-founded induction on -(: 

31x :-(*-1{X} _ C. 

Vy -(* x. Ix(Y) = F(y, Ix [-<-1 {y}). 

Let x E B. Suppose Vz -< x. Q(z). Then we claim 

h = U {Iz I z -( x} 

is a function. Certainly it is a relation giving at least one value for every argument z -( x. 
The only difficulty is in checking the functions I z agree on values assigned to common 
arguments y. But they must--otherwise we would violate the uniqueness property proved 
above. Taking 

Ix = h U {(x, F(x, h))} 

gives a function Ix: -< * -1 { x} - C such that 

Vy -<* x. Ix(Y) = F(y, Ix H-1 {y}). 

This completes the well-founded induction, yielding "Ix E B. Q(x). 
Now we take I = UXEB Ix. By the uniqueness property, this yields I : B - C, and 

moreover I is the unique function satisfying (*). 0 

Well-founded recursion and induction constitute a general method often appropriate 
when functions are intended to be total. For example, it immediately follows from the 
recursion theorem that that there is a unique total function on the nonnegative integers 
such that 

{ 
n + 1 if m = 0 

ack(m,n)= ack(m-l,l) if m:r!=O,n=O 
ack(m - 1, ack(m, n - 1)) otherwise 

for all m, n 2: 0; observe that the value of ack at the pair (m, n) is defined in terms of its 
values at the lexicographically smaller pairs (m - 1,1) and (m, n - 1). In fact, a great 
many recursive programs are written so that some measure within a well-founded set 
decreases as they are evaluated. For such programs often the machinery of least fixed 
points can be replaced by well-founded recursion and induction. 
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10.5 An exercise 

We round off this chapter with an exercise showing that two recursive functions on lists 
are equal. The solution of this single problem brings together many of the techniques 
for reasoning about recursive definitions. We have tended to concentrate on arithmetical 
and boolean operations. Here we look instead at operations on finite lists of integers. An 
integer-list is typically of the form 

consisting of k elements from N. The empty list is also a list which will be written as: 

[ J 

There are two basic operations for constructing lists. One is the constant operation 
taking the empty tuple of arguments 0 to the empty list [ J. The other is generally called 
cons and prefixes an integer m to the front of a list l, the result of which is written as: 

m:: ( 

Thus, for example, 
1 :: [2; 3; 4J = [1; 2; 3; 4J. 

The set of integer-lists forms a discrete cpo which we will call List. It is built up as 
the sum of two discrete cpo's 

List = in! {()} U in2(N x List) = {()} + (N x List) 

with respect to the injection functions which act so: 

ind) = [J and 

in2(m, I) = m :: l. 

That lists can be regarded as a sum in this way reflects the fact that the discrete cpo of 
integer-lists is isomorphic to that of all tuples of integers including the o. 

The sum is accompanied by a cases construction 

case { of [J. ell 
x:: ('. e2. 

Its use is illustrated in a recursive definition of a function 

append: List x List --+ (List) 1-
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which performs the operation of appending two lists: 

append = Ma. AI, Is E List. 

case I of []. llsJI 
x:: l'. (let r {= a(l',ls). Lx:: rJ). 

The function append is the least a function in the cpo [List x List ---t (List).d which 
satisfies 

a([ ], ls) = LlsJ 

a(x :: l', ls) = (let r {= a(l', ls). Lx :: r J). 

An induction on the size of list in the first argument ensures that append is always 
total. Relating lists by l' -< I iff the list l' is strictly smaller than the list I, we might 
instead define a slightly different append operation on lists @ : List x List ---t List by 
well-founded recursion. By the well-founded recursion, Theorem 10.19, @ is the unique 
(total) function such that 

l@ls = case l of [ J. ls I 
x:: l'. x:: (l'@ls) 

for alll, ls E List. The two functions can be proved to be related by 

append(l,ls) = ll@lsJ, 

for all lists I, ls, by well-founded induction. 
Now we can state the problem: 

Exercise 10.20 Assume functions on integers s : N x N ---t Nand r : N x N ---t List. 
Let f be the least function in [List x N ---t N.lJ satisfying 

f([ ], y) = lyJ 
f(x :: xs, y) = f(r(x, y)@xs,s(x,y)). 

Let 9 be the least function in [List x N ---t N.lJ satisfying 

g([ ], y) = lyJ 
g(x :: xs, y) = let v {= g(r(x, y), sex, y)). g(xs, v). 

Prove f = g. 

Hints: First show 9 satisfies 

g(l@xs,y) = let v {= gel, y). g(xs, v) 
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by induction on the size of list l. Deduce f ~ g. Now show f satisfies 

(let u {:= f(l, y). f(xs, u)) ~ f(l@xs, y) 

by fixed-point induction-take as inclusive predicate 

P(F) ~ def [lyIxs,l,y. (let u {:= F(l,y). f(xs,u)) ~ f(l@xs,y)]. 

Deduce 9 ~ f. o 

10.6 Further reading 

The presentation of this chapter has been influenced by [80], [59], and [89]. In particular, 
Manna's book [59] is a rich source of exercises in fixed point and well-founded induc­
tion (though unfortunately the latter principle is called "structural induction" there). I 
am grateful to Larry Paulson for the problem on lists. The reader is warned that the 
terminology for the concept of "inclusive" property and predicate is not universal. The 
term "inclusive" here is inherited from Gordon Plotkin's lecture notes [80]. Others use 
"admissible" but there are other names too. The issue of terminology is complicated by 
option of developing domain theory around directed sets rather than w-chains-within 
the wide class of w-algebraic cpo's this yields an equivalent notion, although it does 
lean on the terminology used. Other references are [13], [58] and [21] (though the latter 
wrongly assumes a predicate on a product cpo is inclusive if inclusive in each argument 
separately). Enderton's book [39] contains a detailed treatment of well-founded recursion 
(look up references to "recursion" in the index of [39], and bear in mind his proofs are 
with respect to a "well ordering," a transitive well-founded relation.) 
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