
1 0 Techniques for recursion

This chapter provides techniques for proving properties of least fixed points of continuous
functions. The characterisation of least fixed points as least prefixed points gives one
method sometimes called Park induction. It is used to establish Bekic's Theorem, an
important result giving different methods for obtaining least fixed points in products of
cpo's. The general method of Scott's fixed-point induction is introduced along with the
notion of inclusive property on which it depends; methods for the construction of inclusive
properties are provided. A section gives examples of the use of well-founded induction
extending our earlier work and, in particular, shows how to build-up well-founded rela
tions. A general method called well-founded recursion is presented for defining functions
on sets with a well-founded relation. The chapter concludes with a small but nontrivial
exercise using several of the techniques to show the equality of two recursive functions
on lists.

10.1 Bekic's Theorem

The Fixed-Point Theorem, Theorem 5.11, of Chapter 5 tells us that if D is a cpo with
..l and F : D --> D is continuous then jix(F) is the least prefixed point of F. In other
words,

F(d) r;::: d =? jix(F) r;::: d

for any d ED. Of course, fix(F) is a fixed point, i.e.

F(jix(F)) = jix(F)

(fixl)

(fix2)

Facts (fixl) and (fix2) characterise jix(F), and are useful in proving properties of fixed
points generallyl The fact (fixl) states a principle of proof sometimes called Park in
duction, after David Park. We will use (fixl) and (fix2) to establish an interesting result
due to Bekic. Essentially, BekiC's Theorem says how a simultaneous recursive definition
can be replaced by recursive definitions of one coordinate at a time.

Theorem 10.1 (Bekic)
Let F : D x E --> D and G : D x E --> E be continuous functions where D and E are
cpo's with bottom. The least jixed point of (F, G) : D x E --> D x E is the pair with
coordinates

j p,f. F(f,p,g. G(p,f. F(f,g),g))

9 p,g. G(p,f. F(f,g),g)

lin fact, because F is monotonic (fix2) could be replaced by F(fix(F)) [;;; fix(F). Then by mono
tonicity, we obtain F(F(fix(F))) [;;; F(fix(F)), i.e. F(fix(F)) is a prefixed point. Now from (fixl) we get
fix(F) I:;: F(fix(F)) which yields (fix2) .

164

Proof: We first show (j, g) is a fixed point of (F, G). By definition

j = ~f. F(f, g).

Chapter 10

In other words j is the least fixed point of Af. F(f, g). Therefore j = F(j, g). Also,
from the definition of g,

9 = G(~f. F(f,g), g) = G(j,g).

Thus (}, g) = (F, GHj, g) i.e. (j, g) is a fixed point of (F, G).
Letting (fo, go) be the least fixed point of (F, G) we must have

10 [::; j and go [::; g.

We require the converse orderings as well. As 10 = F(fo, go),

~f. F(f, go) [::; 10·

By the monotonicity of G

G(~f. F(f, go), go) ~ G(fo, go) = go·

Therefore

9 [::; go

as 9 is the least prefixed point of Ag. G(~f. F(f,g),g).
By the monotonicity of F,

F(fo, g) [::; F(fo, go) = 10·

Therefore
j [::; 10

as j is the least prefixed point of Af. F(f, g).
Combining (I), (2), (3) we see (j,g) = (fo,go), as required.

(1)

(2)

(3)

o

The proof only relied on monotonicity and the properties of least fixed points expressed
by (fix1) and (fix2) above. For this reason the same argument carries over to the situation
of least fixed points of monotonic functions on lattices (see 5.5).

BekiC's Theorem gives an asymmetric form for the simultaneous least fixed point. We
can deduce a symmetric form as a corollary: the simultaneous least fixed point is a pair

j = ~f. F(f, M·G(f, g»
9 = M· G(~f.F(f,g), g)

To see this notice that the second equation is a direct consequence of BekiC's Theorem
while the first follows by the symmetry there is between 1 and g.

Techniques for recursion 165

Example: We refer to Section 9.8 where it is indicated how to extend REC to allow
local declarations. Consider the term

T == let rec B ~ (let rec A ~ t in u)
in (let rec A ~ t in v).

where A and B are assumed to be distinct function variables of arity o. Let p, rp be
arbitrary variable and function-variable environments. Abbreviate

F(f,g) = [t]rp[J/A,g/Blp

G(f,g) = [u]rp[J/A,g/Blp

From the semantics we see that

where

and

[T]rpp = [v]rp[j / A, g/ Blp

g J.Lg. [let rec A ~ tin u]rp[g/ Blp
J.Lg. [u]rp[g/ B, J.Lf. [t]rp[J / A, g/ Blp/Alp
J.Lg. G(J.Lf.F(f, g), g).

j = J.Lf. [t]rp[J/A,g/Blp

= J.Lf. F(f,.9).

By BekiC's Theorem this means (j,g) is the (simultaneous) least fixed point of (F,G).
consequently we could have achieved the same effect with a simultaneous declaration; we
have

[T] = [let rec A ~ t and B ~ u in v].

The argument is essentially the same for function variables taking arguments by either
call-by-name or call-by-value. Clearly Bekic's Theorem is crucial for establishing program
equivalences between terms involving simultaneous declarations and others. 0

Exercise 10.2 Generalise and state Bekic's Theorem for 3 equations. 0

Exercise 10.3 Let D and E be cpo's with bottom. Prove that if f D -+ E and
9 : E -+ D are continuous functions on cpo's D, E then

fix(g 0 f) = g(fix(f 0 g)).

(Hint: Use facts (fixl) and (fix2) above.) o

166 Chapter 10

10.2 Fixed-point induction

Often a property can be shown to hold of a least fixed point by showing that it holds for
each approximant by mathematical induction. This was the case, for example, in Chapter
5 where, in the proof of Theorem 5.7, stating the equivalence between operational and
denotational semantics, the demonstration that

(1, (1') E CITc] =? (c, (1) -t (1',

for states (1, (1', in the case where the command c was a while-loop, was achieved by
mathematical induction on the approximants of its denotation. In this case it was obvious
that a property holding of all the approximants of a least fixed point implied that it held
of their union, the fixed point itself. This need not be the case for arbitrary properties.

As its name suggests fixed-point induction, a proof principle due to Dana Scott, is
useful for proving properties of least fixed points of continuous functions. Fixed-point
induction is a proof principle which essentially replaces a mathematical induction along
the approximants FnCl) of the least fixed point Un Fn(..1.) of a continuous function
F. However, it is phrased in such a way as to avoid reasoning about the integers. It
only applies to properties which are inclusive; a property being inclusive ensures that its
holding of all approximants to a least fixed point implies that it holds of the fixed point
itself.

Definition: Let D be a cpo. A subset P of D is inclusive iff for all w-chains do r:;;: d1 r:;;:

... r:;;: dn r:;;: ... in D if dn E P for all nEw then UnEw dn E P.

The significance of inclusive subsets derives from the principle of proof called fixed-point
induction. It is given by the following proposition:

Proposition 10.4 (Fixed-point induction-Scott)
Let D be a cpo with bottom ..1., and F : D -t D be continuous. Let P be an inclusive
subset of D. If..1. E P and t/x E D. x E P =? F(x) E P then fix(F) E P.

Proof: We have fix(F) = Un Fn(..1.). If P is an inclusive subset satisfying the condition
above then ..1. E P hence F(..1.) E P, and inductively Fn(..1.) E P. As we have seen, by
induction, the approximants form an w-chain

whence by the inclusiveness of P, we obtain fix(F) E P. o

Techniques for recursion 167

Exercise 10.5 What are the inclusive subsets of n? Recall n is the cpo consisting of:

o

Exercise 10.6 A Scott-closed subset of a cpo is the complement of a Scott-open subset
(defined in Exercise 8.4). Show a Scott-closed subset is inclusive. Exhibit an inclusive
subset of a cpo which is not Scott-closed. 0

As a first, rather easy, application of fixed-point induction we show how it implies Park
induction, discussed in the last section:

Proposition 10.7 Let F : D --+ D be a continuous function on a cpo D with bottom.
Let d ED. If F(d) ~ d then fix(F) ~ d.

Proof: (via fixed-point induction)
Suppose d E D and F(d) ~ d. The subset

P = {x E D I x ~ d}

is inclusive-if each element of an w-chain do ~ ... ~ dn ~ ... is below d then certainly
so is the least upper bound Un dn . Clearly J.. ~ d, so J.. E P. We now show x E P *
F(x) E P. Suppose x E P, i.e. x ~ d. Then, because F is monotonic, F(x) ~ F(d) ~ d.
So F(x) E P. By fixed-point induction we conclude fix(F) E P, i.e. fix(F) ~ d, as
required. o

Of course, this is a round-about way to show a fact we know from the Fixed-Point
Theorem. It does however demonstrate that fixed-point induction is at least as strong
as Park induction. In fact fixed-point induction enables us to deduce properties of least
fixed points unobtainable solely by applying Park induction.

A predicate Q(XI, ... ,Xk) with free variables Xl, ... ,Xk, ranging over a cpo's D I, ... , Dk
respectively, determines a subset of DI x ... X Dk, viz.the set

and we will say the predicate Q(Xl, ... , Xk) is inclusive if its extension as a subset of the
cpo Dl x ... X Dk is inclusive. As with other induction principles, we shall generally use
predicates, rather than their extensions as sets, in carrying out a fixed-point induction.
Then fixed-point induction amounts to the following statement:

168 Chapter 10

Let F : Dl x ... X Dk --+ Dl X ... X Dk be a continuous function on a product cpo
Dl x··· X Dk with bottom element (.1.. 1, ... , .1..k)' Assuming Q(Xl,"" Xk) is an inclusive
predicate on Dl x ... X Dk,

if Q(.1.. l , ... , .1..k) and

'r/Xl E D l ,'" ,Xk E Dk. Q(Xl, ... , Xk) => Q(F(Xl,"" Xk»

then Q(fix(F».

Fortunately we will be able to ensure that a good many sets and predicates are inclusive
because they are built-up in a certain way:

Basic relations: Let D be a cpo. The binary relations

{ (x, y) E D x D I x [;;; y} and {(x, y) E D x D I x = y}

are inclusive subsets of D x D (Why?). It follows that the predicates

x [;;; y, x=y

are inclusive.

Inverse image and substitution: Let f : D --+ E be a continuous function between
cpo's D and E. Suppose P is an inclusive subset of E. Then the inverse image

r l P = {x E D I f(x) E P}

is an inclusive subset of D.
This has the consequence that inclusive predicates are closed under the substitution of

terms for their variables, provided the terms substituted are continuous in their variables.
Let Q(Yl, ... , Yl) be an inclusive predicate of E 1 x ... X E l . In other words,

is an inclusive subset of El x ... X E1. Suppose el,"" el are expressions for elements of
E l , ... , El, respectively, continuous in their variables Xl, ... , Xk ranging, in order, over
Dl , ... , Dk-taking them to be expressions in our metalanguage of Section 8.4 would
ensure this. Then, defining f to be

ensures f is a continuous function. Thus f- 1 P is an inclusive subset of Dl x ... X Dk.
But this simply means

Techniques for recursion 169

is an inclusive subset, and thus that Q (e 1, ... , el) is an inclusive predicate of D 1 X ... x D k.

For instance, taking f = .Ax E D. (x, c) we see if R(x, y) is an inclusive predicate of
D x E then the predicate Q(x) {=> defR(x, c), obtained by fixing y to a constant c,
is an inclusive predicate of D. Fixing one or several arguments of an inclusive predicate
yields an inclusive predicate.

Exercise 10.8 Show that if Q(x) is an inclusive predicate of a cpo D then

R(x, y) {=> defQ(x)

is an inclusive predicate of D x E, where the extra variable y ranges over the cpo E.
(Thus we can "pad-out" inclusive predicates with extra variables. Hint: projection
function.) 0

Logical operations: Let D be a cpo. The subsets D and 0 are inclusive. Consequently
the predicates "true" and "false", with extensions D and 0 respectively, are inclusive.
Let P ~ D and Q ~ D be inclusive subsets of D. Then

PuQ and pnQ

are inclusive subsets. In terms of predicates, if P(Xl, ... ,Xk) and Q(Xl, ... ,Xk) are
inclusive predicates then so are

If Pi, i E I, is an indexed family of inclusive subsets of D then niEI Pi is an inclusive
subset of D. Consequently, if P(Xl, ... ,Xk) is an inclusive predicate of Dl x ... X Dk
then 't/Xi E Di. P(Xl, ... , Xk), with 1 SiS k, is an inclusive predicate of D. This is
because the corresponding subset

equals the intersection,

n ((Xl, ... ,Xi-l,Xi+!, ... ,Xk) E Dl x ···Di - 1 X DHI X ... X Dk
dEDi

P(Xl' ... , Xi-I, d, XHl, ... ,Xk)}

of inclusive subsets---each predicate P(XI, ... , Xi-I, d, Xi+! , ... , xd, for dEDi, is inclu
sive because it is obtained by fixing one argument.

However, note that infinite unions of inclusive subsets need not be inclusive, and
accordingly, that inclusive predicates are not generally closed under 3-quantification.

170 Chapter 10

Exercise 10.9
(i) Provide a counter example which justifies the latter claim.
(ii) Show that the direct image f P of an inclusive subset P ~ D, under a continuous
function f : D -+ E between cpo's, need not be an inclusive subset of E.
(iii) Also, provide examples of inclusive subsets P ~ D x E and Q ~ E x F such that
their relation composition

Q 0 P =def {(d, f) I 3e E E. (d, e) E P&(e, f) E Q}

is not inclusive.
(Hint for (iii): Take D to be the singleton cpo {T}, E to be the discrete cpo of nonnegative
integers wand F to be the cpo n consisting of an w-chain together with its least upper
bound 00.) 0

Athough the direct image of an inclusive subset under a general continuous function
need not be inclusive, direct images under order-manics necessarily preserve inclusiveness.
Let D, E be cpo's. A continuous function f : D -+ E is an order-monic iff

f(d) ~ f(d') => d ~ d'

for all d, d' E D. Examples of order-monics include the "lifting" function l- J and injec
tions ini associated with a sum. It is easy to see that if P is an inclusive subset of D
then so is its direct image fP when f is an order-monic. This means that if Q(x) is an
inclusive predicate of D then

3x E D. y = f(x) & Q(x),

with free variable y E E, is an inclusive predicate of E.

Now we can consider inclusive subsets and predicates associated with particular cpo's
and constructions on them:

Discrete cpo's: Any subset of a discrete cpo, and so any predicate on a discrete cpo,
is inclusive.

Products: Suppose Pi ~ Di are inclusive subsets for 1 :s; i :s; k. Then

is an inclusive subset of the product Dl x ... X D k . This follows from our earlier results,
by noting

Techniques for recursion 171

Each inverse image nil Pi is inclusive, for i = 1, ... , k, and therefore so too is their
intersection.
Warning: Let Db ... ,Dk be cpo's. It is tempting to believe that a predicate P(x 1, ... ,Xk),
where Xl E D 1 ,···, Xk E Dk, is an inclusive predicate of the product Dl x ... X Dk if
it is an inclusive predicate in each argument separately. This is not the case however.
More precisely, say P(Xl, . .. ,Xk) is inclusive in each argument separately, if for each
i = 1, ... , k, the predicate P(d l , ... ,di- l , Xi, di+l' ... , dk), got by fixing all but the ith
argument, is an inclusive predicate of D i . Certainly if P(Xl, .. . , Xk) is inclusive then it
is inclusive in each argument separately-we can substitute constants for variables and
preserve inclusiveness from the discussion above. The converse does not hold however.
The fact that P(Xl, ... , Xk) is inclusive in each argument separately does not imply that
it is an inclusive predicate of Dl x ... X D k .

Exercise 10.10 Let n be the cpo consisting of w together with 00 ordered:

By considering the predicate

P(X,y) <==> def(x=y&xi=oo)

show that a predicate being inclusive in each argument separately does not imply that
it is inclusive. 0

Function space: Let D and E be cpo's. Suppose P ~ D, and Q ~ E is an inclusive
subset. Then

P -t Q =def {f E [D -t Ell \:Ix E P. f(x) E Q}

is an inclusive subset of the function space [D -t EJ (Why?). Consequently, the predicate
\:Ix E D.P(x) :::::} Q(J(x)), with free variable f E [D -t EJ, is inclusive when P(x) is a
predicate of D and Q(y) is an inclusive predicate of E.

Lifting: Let P be an inclusive subset of a cpo D. Because the function L -J is an order
monic, the direct image L P J = {l d J IdE P} is an inclusive subset of D.l.. If Q(x) is an
inclusive predicate of D then

::Ix E D. y = LxJ & Q(x),

with free variable y E D.l., is an inclusive predicate of D.l..

Sum: Let Pi be an inclusive subset of the cpo Di for i = 1, ... , k. Then

172 Chapter 10

is an inclusive subset of the sum DI + ... + Dk. This follows because each injection is an
order-monic so each iniPi is inclusive, and the finite union of inclusive sets is inclusive.
Expressing the same fact using predicates we obtain that the predicate

with free variable y E Dl + ... + Dk, is an inclusive predicate of the sum if each Qi(Xi)
is an inclusive predicate of the component D i.

The methods described above form the basis of a a language of inclusive predicates.
Provided we build up predicates from basic inclusive predicates using the methods ad
mitted above then they are guaranteed to be inclusive. For example, any predicate
built-up as a universal quantification over several variables of conjunctions and disjunc
tions of basic predicates of the form e 1 ~ e2 for terms el, e2 in our metalanguage will be
inclusive.

Proposition 10.11 Any predicate of the form

is inclusive where Xl, ... ,Xn are variables ranging over specific cpo's, and P is built up

by conjunctions and disjunctions of basic predicates of the form e 0 ~ el or eo = el, where

eo and el are expressions in the metalanguage of expressions from Section 8.4.

Unfortunately, such syntactic means fail to generate all the predicates needed in proofs
and the manufacture of suitable inclusive predicates can become extremely difficult when
reasoning about recursively defined domains.

Example: Let T.L be the usual complete partial order of truth values {true, false} .L.
Abbreviate ltrueJ to tt and lfalseJ to ff. Let p: D ---> T.L and h : D ---> D be continuous
with h strict (i. e. h(..l) = ..l). Let f : D x D ---> D be the least continuous function such
that

f(x, y) = p(x) ---> y I h(f(h(x), y))

for all X, y E D. We prove

(i) h(b ---> die) = b ---> h(d)lh(e) for all bET.L and d, e E D, and
(ii) h(f(x, y)) = f(x, h(y)) for all X, y E D.

Part (i) follows easily by considering the three possible values ..l, tt, ff for bET .L.
If b =..l then h(b ---> die) = h(..l) = ..l = b ---> h(d)lh(e)

If b = tt then h(b ---> die) = h(d) = b ---> h(d)lh(e)

If b = ff then h(b ---> die) = h(e) = b ---> h(d)lh(e)

Techniques for recursion 173

Hence the required equation holds for all possible values of the boolean b.

Part (ii) follows by fixed-point induction. An appropriate predicate is

P(g) {o}deJ VX,y E D. h(g(x,y)) =g(x,h(y))

The predicate peg) is inclusive because it can be built-up by the methods described
earlier. Because h is strict we see that P(..L) is true. To apply fixed-point induction we
require further that

peg) =? P(F(g))

where F(g) = .Ax, y. p(x) -> y I (h(g(h(x), V))·
Assume peg). Let x, y E D. Then

h«F(g))(x, V)) h(p(x) -> y I h(g(h(x), V)))

p(x) -> hey) I h2(g(h(x), v)), by (i)

p(x) -> hey) I h(g(h(x), hey))), by the assumption peg)

(F(g))(x, hey))

Thus P(F(g)). Hence peg) =? p(F(g)).
By fixed-point induction, we deduce P(fix(F)) i.e. P(J) i.e. 'Ix, y E D. h(J(x, y)) =

f(x, hey)) as required. 0

Exercise 10.12 Define h : N -> N.l recursively by

hex) = hex) +.1 LIJ

Show h = ..1, the always-..L function, using fixed-point induction. o

Exercise 10.13 Let D be a cpo with bottom. Let p : D -> T.l be continuous and strict
(i. e. p(..L) = ..L) and h : D -> D be continuous. Let f : D -> D to be the least continuous
function which satisfies

f(x) = p(x) -> x I f(J(h(x)))

for all xED. Prove
'Ix E D. f(J(x)) = f(x).

(Hint:Take as induction hypothesis the predicate

peg) ~ deJVX E D. f(g(x)) = g(X).)

o

174 Chapter 10

Exercise 10.14 Let h, k : D ~ D be continuous functions on a cpo D with bottom,
with h strict. Let p : D ~ T 1- be a continuous function. Let f, 9 be the least continuous
functions D x D ~ D satisfying

f(x, y) = p(x) ~ y I h(f(k(x), y))

g(x, y) = p(x) ~ y I g(k(x), h(y))

for all x, y E D. Using fixed-point induction show f = g.

(Hint: Regard the solutions as simultaneous fixed points and take the inclusive predicate
to be

P(f,g) {::::::::> de/'<:fx,y. [f(x,y) = g(x,y) & g(x,h(y)) = h(g(x,y))].)

o

It is probably helpful to conclude this section with a general remark on the use of fixed
point induction. Faced with a problem of proving a property holds of a least fixed point
it is often not the case that an inclusive property appropriate to fixed point induction
suggests itself readily. Like induction hypotheses, or invariants of programs, spotting a
suitable inclusive property frequently requires fairly deep insight. The process of obtain
ing a suitable inclusive property can often make carrying out the actual proof a routine
matter. It can sometimes be helpful to start by exploring the first few approximants
to a least fixed point, with the hope of seeing a pattern which can be turned into an
induction hypothesis. The proof can then be continued by mathematical induction on
approximants (provided the property holding of each approximant implies it holds of the
least fixed point), or, often more cleanly, by fixed-point induction (provided the property
is inclusive).

10.3 Well-founded induction

Fixed-point induction is inadequate for certain kinds of reasoning. For example, suppose
we want to show a recursively defined function on the integers always terminates on
integer inputs. We cannot expect to prove this directly using fixed-point induction. To
do so would involve there being an inclusive predicate P which expressed termination
and yet was true of .1, the completely undefined function. An extra proof principle is
needed which can make use of the way data used in a computation is inductively defined.
An appropriate principle is that of well-founded induction. Recall from Chapter 3 that a
well-founded relation on a set A is a binary relation ~ which does not have any infinite
descending chains. Remember the principle of well-founded induction says:

Techniques for recursion 175

Let -< be a well founded relation on a set A. Let P be a property. Then Va E A. P(a)
iff

Va E A. ([Vb -< a. P(b)] =?- P(a)).

Applying the principle often depends on a judicious choice of well-founded relation.
We have already made use of well-founded relations like that of proper subexpression on
syntactic sets, or < on natural numbers. Here some well-known ways to construct further
well-founded relations are given. Note that we use x j y to mean (x -< y or x = y).

Product: If -<1 is well-founded on A1 and -<2 is well-founded on Az then taking

determines a well-founded relation -<= (j \1 Al xA 2) in A1 x A2 . However product
relations are not as generally applicable as those produced by lexicographic orderings.

Lexicographic products: Let -<1 be well-founded on A1 and -<2 be well-founded on
A2 . Define

Inverse image: Let f : A -> B be a function and -<B a well-founded relation on B.
Then -<A is well-founded on A where

a -<A a' {:}dej f(a) -<B f(a')

for a, a' EA.

Exercise 10.15 Let -< be a well-founded relation on a set X such that -< is a total
order. Show it need not necessarily satisfy

{x E X I x -< y}

is finite for all y EX.
(A total order is a partial order:::; such that x :::; y or y :::; x for all its elements x, y.)
(Hint: Consider the lexicographic product of < and < on w x w.) 0

Exercise 10.16 Show the product, lexicographic product and inverse image construc
tions do produce well-founded relations from well-founded relations. 0

Example: A famous example is Ackermann's function which can be defined in REC by
the declaration:

176 Chapter 10

A(x, y) = if x then y + 1 else
if y then A(x - 1,1) else

A(x - 1, A(x, y - 1))

Under the denotational semantics for call-by-value, this declares A to have denotation
the least function a in [N 2 ----> N.l] such that

{
In + IJ

a(m, n) = a(m - 1,1)
let l ¢= a(m, n - 1). a(m - 1, l)

if m = 0
if m i- O,n = 0
otherwise

for all m, n E N. The fact that Ackermann's function a(m, n) terminates on all integers
m, n :::: 0 is shown by well-founded induction on (m, n) ordered lexicographically. 0

Exercise 10.17 Prove Ackermann's function a(m, n) terminates on all integers m, n :::: 0
by well-founded induction by taking as induction hypothesis

P(m,n) {c}dej (a(m,n) i- J.. and a(m,n):::: 0)

for m,n:::: o. o

Exercise 10.18 The 91 function of McCarthy is defined to be the least function in
[N ----> N.l] such that

f(x) = cond(x > 100, lx - 10J, let y ¢= f(x + 11). f(y))·

(This uses the conditional of 8.3.5)
Show this implies

f(x) = cond(x > 100, lx -lOJ, 191J)

for all nonnegative integers x. Use well-founded induction on w with relation

n -< m {c} m < n S; 101,

for n, mEw. First show -< is a well-founded relation.

10.4 Well-founded recursion

o

In Chapter 3 we noticed that both definition by induction and structural induction allow a
form of recursive definition, that the length of an arithmetic expression can, for instance,
be defined recursively in terms of the lengths of its strict subexpressions; how the length
function acts on a particular argument, like (al + a2) is specified in terms of how the

Techniques for recursion 177

length function acts on strictly smaller arguments, like a 1 and a2. In a similar way
we are entitled to define functions on an arbitrary well-founded set. Suppose B is a set
with a well-founded relation -<. Definition by well-founded induction, called well-founded
recursion, allows the definition of a function f from B by specifying its value feb) at an
arbitrary b in B in terms of feb') for b' -< b. We need a little notation to state and justify
the general method precisely. Each element b in B has a set of predecessors

-<-1 {b} = {b' E Bib' -< b}.

For any B' ~ B, a function f : B -> C restricts to a function f f B' : B' -> C by taking

f f B' = {(b, feb)) I bE B'}.

Definition by well-founded recursion is justified by the following theorem:

Theorem 10.19 (Well-founded recursion)

Let -< be a well-founded relation on a set B. Suppose F(b, h) E C, for all b E Band
functions h : -< -1 {b} -> C. There is a unique function f : B -> C such that

Vb E B. feb) = F(b,f H- 1 {b}). (*)

Proof: The proof has two parts. We first show a uniqueness property:

Vy -<* x. fey) = F(y,! f-<-l {v}) & g(y) = F(y,g H-1 {v})

'* f(x) = g(x),

for any x E B. This uniqueness property P(x) is proved to hold for all x E B by well
founded induction on -<: For x E B, assume P(z) for every z -< x. We require P(x). To
this end suppose

fey) = F(y,! f-<-l {v}) & g(y) = F(y,g H-1 {v})

for all y -<* x. If z -< x, then as P(z) we obtain

fez) = g(z).

Hence

It now follows that

f(x) = F(x,f H-1 {x}) = F(x,g H-1 {x}) = g(x).

178 Chapter 10

Thus P(x).
It follows that there can be at most one function I satisfying (*). We now show that

there exists such a function. We build the function by unioning together a set of functions
Ix : -(*-l{X} - C, for x E B. To show suitable functions exist we prove the following
property Q(x) holds for all x E B by well-founded induction on -(:

31x :-(*-1{X} _ C.

Vy -(* x. Ix(Y) = F(y, Ix [-<-1 {y}).

Let x E B. Suppose Vz -< x. Q(z). Then we claim

h = U {Iz I z -(x}

is a function. Certainly it is a relation giving at least one value for every argument z -(x.
The only difficulty is in checking the functions I z agree on values assigned to common
arguments y. But they must--otherwise we would violate the uniqueness property proved
above. Taking

Ix = h U {(x, F(x, h))}

gives a function Ix: -< * -1 { x} - C such that

Vy -<* x. Ix(Y) = F(y, Ix H-1 {y}).

This completes the well-founded induction, yielding "Ix E B. Q(x).
Now we take I = UXEB Ix. By the uniqueness property, this yields I : B - C, and

moreover I is the unique function satisfying (*). 0

Well-founded recursion and induction constitute a general method often appropriate
when functions are intended to be total. For example, it immediately follows from the
recursion theorem that that there is a unique total function on the nonnegative integers
such that

{
n + 1 if m = 0

ack(m,n)= ack(m-l,l) if m:r!=O,n=O
ack(m - 1, ack(m, n - 1)) otherwise

for all m, n 2: 0; observe that the value of ack at the pair (m, n) is defined in terms of its
values at the lexicographically smaller pairs (m - 1,1) and (m, n - 1). In fact, a great
many recursive programs are written so that some measure within a well-founded set
decreases as they are evaluated. For such programs often the machinery of least fixed
points can be replaced by well-founded recursion and induction.

Techniques for recursion 179

10.5 An exercise

We round off this chapter with an exercise showing that two recursive functions on lists
are equal. The solution of this single problem brings together many of the techniques
for reasoning about recursive definitions. We have tended to concentrate on arithmetical
and boolean operations. Here we look instead at operations on finite lists of integers. An
integer-list is typically of the form

consisting of k elements from N. The empty list is also a list which will be written as:

[J

There are two basic operations for constructing lists. One is the constant operation
taking the empty tuple of arguments 0 to the empty list [J. The other is generally called
cons and prefixes an integer m to the front of a list l, the result of which is written as:

m:: (

Thus, for example,
1 :: [2; 3; 4J = [1; 2; 3; 4J.

The set of integer-lists forms a discrete cpo which we will call List. It is built up as
the sum of two discrete cpo's

List = in! {()} U in2(N x List) = {()} + (N x List)

with respect to the injection functions which act so:

ind) = [J and

in2(m, I) = m :: l.

That lists can be regarded as a sum in this way reflects the fact that the discrete cpo of
integer-lists is isomorphic to that of all tuples of integers including the o.

The sum is accompanied by a cases construction

case { of [J. ell
x:: ('. e2.

Its use is illustrated in a recursive definition of a function

append: List x List --+ (List) 1-

180 Chapter 10

which performs the operation of appending two lists:

append = Ma. AI, Is E List.

case I of []. llsJI
x:: l'. (let r {= a(l',ls). Lx:: rJ).

The function append is the least a function in the cpo [List x List ---t (List).d which
satisfies

a([], ls) = LlsJ

a(x :: l', ls) = (let r {= a(l', ls). Lx :: r J).

An induction on the size of list in the first argument ensures that append is always
total. Relating lists by l' -< I iff the list l' is strictly smaller than the list I, we might
instead define a slightly different append operation on lists @ : List x List ---t List by
well-founded recursion. By the well-founded recursion, Theorem 10.19, @ is the unique
(total) function such that

l@ls = case l of [J. ls I
x:: l'. x:: (l'@ls)

for alll, ls E List. The two functions can be proved to be related by

append(l,ls) = ll@lsJ,

for all lists I, ls, by well-founded induction.
Now we can state the problem:

Exercise 10.20 Assume functions on integers s : N x N ---t Nand r : N x N ---t List.
Let f be the least function in [List x N ---t N.lJ satisfying

f([], y) = lyJ
f(x :: xs, y) = f(r(x, y)@xs,s(x,y)).

Let 9 be the least function in [List x N ---t N.lJ satisfying

g([], y) = lyJ
g(x :: xs, y) = let v {= g(r(x, y), sex, y)). g(xs, v).

Prove f = g.

Hints: First show 9 satisfies

g(l@xs,y) = let v {= gel, y). g(xs, v)

Techniques for recursion 181

by induction on the size of list l. Deduce f ~ g. Now show f satisfies

(let u {:= f(l, y). f(xs, u)) ~ f(l@xs, y)

by fixed-point induction-take as inclusive predicate

P(F) ~ def [lyIxs,l,y. (let u {:= F(l,y). f(xs,u)) ~ f(l@xs,y)].

Deduce 9 ~ f. o

10.6 Further reading

The presentation of this chapter has been influenced by [80], [59], and [89]. In particular,
Manna's book [59] is a rich source of exercises in fixed point and well-founded induc
tion (though unfortunately the latter principle is called "structural induction" there). I
am grateful to Larry Paulson for the problem on lists. The reader is warned that the
terminology for the concept of "inclusive" property and predicate is not universal. The
term "inclusive" here is inherited from Gordon Plotkin's lecture notes [80]. Others use
"admissible" but there are other names too. The issue of terminology is complicated by
option of developing domain theory around directed sets rather than w-chains-within
the wide class of w-algebraic cpo's this yields an equivalent notion, although it does
lean on the terminology used. Other references are [13], [58] and [21] (though the latter
wrongly assumes a predicate on a product cpo is inclusive if inclusive in each argument
separately). Enderton's book [39] contains a detailed treatment of well-founded recursion
(look up references to "recursion" in the index of [39], and bear in mind his proofs are
with respect to a "well ordering," a transitive well-founded relation.)

	Cover
	Foundations of Computing
	The Formal Semantics of Programming Languages: An Introduction
	Copyright
	0262231697

	Contents
	Series foreword
	Preface
	1 Basic set theory�������������������������
	1.1 Logical notation���������������������������
	1.2 Sets���������������
	1.2.1 Sets and properties��������������������������������
	1.2.2 Some important sets��������������������������������
	1.2.3 Constructions on sets����������������������������������
	1.2.4 The axiom of foundation������������������������������������

	1.3 Relations and functions����������������������������������
	1.3.1 Lambda notation����������������������������
	1.3.2 Composing relations and functions��
	1.3.3 Direct and inverse image of a relation���
	1.3.4 Equivalence relations����������������������������������

	1.4 FUrther reading��������������������������

	2 Introduction to operational semantics��
	2.1 IMP-a simple imperative language���
	2.2 The evaluation of arithmetic expressions���
	2.3 The evaluation of boolean expressions��
	2.4 The execution of commands������������������������������������
	2.5 A simple proof�������������������������
	2.6 Alternative semantics��������������������������������
	2.7 Further reading

	3 Some principles of induction�������������������������������������
	3.1 Mathematical induction���������������������������������
	3.2 Structural induction�������������������������������
	3.3 Well-founded induction���������������������������������
	3.4 Induction on derivations�����������������������������������
	3.5 Definitions by induction�����������������������������������
	3.6 Further reading��������������������������

	4 Inductive definitions������������������������������
	4.1 Rule induction�������������������������
	4.2 Special rule induction���������������������������������
	4.3 Proof rules for operational semantics��
	4.3.1 Rule induction for arithmetic expressions��
	4.3.2 Rule induction for boolean expressions���
	4.3.3 Rule induction for commands��

	4.4 Operators and their least fixed points���
	4.5 Further reading��������������������������

	5 The denotational semantics of IMP��
	5.1 Motivation���������������������
	5.2 Denotational semantics���������������������������������
	5.3 Equivalence of the semantics���������������������������������������
	5.4 Complete partial orders and continuous functions���
	5.5 The Knaster-Tarski Theorem�������������������������������������
	5.6 Further reading��������������������������

	6 The axiomatic semantics of IMP���������������������������������������
	6.1 The idea�������������������
	6.2 The assertion language Assn��������������������������������������
	6.2.1 Free and bound variables�������������������������������������
	6.2.2 Substitution�������������������������

	6.3 Semantics of assertions����������������������������������
	6.4 Proof rules for partial correctness��
	6.5 Soundness��������������������
	6.6 Using the Hoare rules-an example���
	6.7 Further reading��������������������������

	7 Completeness of the Hoare rules��
	7.1 Codel's Incompleteness Theorem���
	7.2 Weakest preconditions and expressiveness���
	7.3 Proof of Codel's Theorem�����������������������������������
	7.4 Verification conditions����������������������������������
	7.5 Predicate transformers���������������������������������
	7.6 Further reading��������������������������

	8 Introduction to domain theory��������������������������������������
	8.1 Basic definitions����������������������������
	8.2 Streams-an example�����������������������������
	8.3 Constructions on cpo's���������������������������������
	8.3.1 Discrete cpo's���������������������������
	8.3.2 Finite products����������������������������
	8.3.3 Function space���������������������������
	8.3.4 Lifting��������������������
	8.3.5 Sums�����������������

	8.4 A metalanguage�������������������������
	8.5 Further reading��������������������������

	9 Recursion equations����������������������������
	9.1 The language REC���������������������������
	9.2 Operational semantics of call-by-value���
	9.3 Denotational semantics of call-by-value��
	9.4 Equivalence of semantics for call-by-value���
	9.5 Operational semantics of call-by-name��
	9.6 Denotational semantics of call-by-name���
	9.7 Equivalence of semantics for call-by-name��
	9.8 Local declarations�����������������������������
	9.9 Further reading��������������������������

	10 Techniques for recursion����������������������������������
	10.1 Bekic's Theorem
	10.2 Fixed-point induction���������������������������������
	10.3 Well-founded induction����������������������������������
	10.4 Well-founded recursion����������������������������������
	10.5 An exercise�����������������������
	10.6 Further reading���������������������������

	11 Languages with higher types�������������������������������������
	11.1 An eager language�����������������������������
	11.2 Eager operational semantics���������������������������������������
	11.3 Eager denotational semantics��
	11.4 Agreement of eager semantics��
	11.5 A lazy language���������������������������
	11.6 Lazy operational semantics��������������������������������������
	11.7 Lazy denotational semantics���������������������������������������
	11.8 Agreement of lazy semantics���������������������������������������
	11.9 Fixed-point operators���������������������������������
	11.10 Observations and full abstraction��
	11.11 Sums�����������������
	11.12 Further reading����������������������������

	12 Information systems�����������������������������
	12.1 Recursive types���������������������������
	12.2 Information systems�������������������������������
	12.3 Closed families and Scott predomains��
	12.4 A cpo of information systems��
	12.5 Constructions�������������������������
	12.5.1 Lifting���������������������
	12.5.2 Sums������������������
	12.5.3 Product���������������������
	12.5.4 Lifted function space�����������������������������������

	12.6 Further reading���������������������������

	13 Recursive types�������������������������
	13.1 An eager language�����������������������������
	13.2 Eager operational semantics���������������������������������������
	13.3 Eager denotational semantics��
	13.4 Adequacy of eager semantics���������������������������������������
	13.5 The eager A-calculus��������������������������������
	13.5.1 Equational theory�������������������������������
	13.5.2 A fixed-point operator������������������������������������

	13.6 A lazy language���������������������������
	13.7 Lazy operational semantics��������������������������������������
	13.8 Lazy denotational semantics���������������������������������������
	13.9 Adequacy of lazy semantics��������������������������������������
	13.10 The lazy λ-calculus
	13.10.1 Equational theory��������������������������������
	13.10.2 A fixed-point operator�������������������������������������

	13.11 Further reading����������������������������

	14 Nondeterminism and parallelism
	14.1 Introduction������������������������
	14.2 Guarded commands����������������������������
	14.3 Communicating processes�����������������������������������
	14.4 Milner's CCS������������������������
	14.5 Pure CCS��������������������
	14.6 A specification language������������������������������������
	14.7 The modal v-calculus��������������������������������
	14.8 Local model checking��������������������������������
	14.9 Further reading���������������������������

	A Incompleteness and undecidability��
	A.1 Computability
	A.2 Undecidability
	A.3 Godel's incompleteness theorem
	A.4 A universal program
	A.5 Matijasevic's Theorem
	A.6 Further reading

	Bibliography�������������������
	Index������������

