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The cover is designed from an example of an interaction
between computers and the physical and mathematical
sciences. The designdepicts ion trojectories in atype
of mass spectrometer used for chemical analysis of resi~
dual gases in ultra high vacuum systems. These ion tra-
jectories represent solutions of Mathieu's differential
equation. They are generated by numerical integration
of the equation using @ high speed computer, and are
plotted automatically froman output tapeas part of the
Research Center computing service.
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COMPUTATIONAL COMPLEXITY AND PROGRAM STRUCTURE%
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ABSTRACT: Loop programs have the property that an upper bound
on the running time of a program is determined by its structure,
Each program consists only of assignment and iteration {(loop) state-
ments, but all of the arithmetic functions commonly encountered in
digital computation can be computed by Loop programs, A simple
procedure for bounding the running time is shown to be best possible;
some programs actually achieve the bound, and it is effectively un-
decidable whether a program runs faster than the bound, The com-
plexity of functions can be measured by the loop structure of
programs which compute them, The functions computable by Loop
programs are precisely the primitive recursive functions,
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1. INTRCODUCTION

Predicting how long a digital computer program will re-
quire to process given inputs is sometimes impossibly
difficult, This difficulty can be partially explained as a reflec-
tion of the theorem that there is no effective method for
bounding the computation time of a Turing machine from in-
spection of its program, or for bounding the computation time
of a program in any language capable of describing all recur-
sive functions,

In this paper we describe a class of programs, called
Loop programs, which do have the property that the computa-
tion time of any program can be bounded by 2 particularly
simple function of its inputs, and that moreover the bounding
function is itself determined in a simple way from the structure
of the program, The study of classes of programs and func-
tions with this property is a constant theme throughout
automata theory and the related area which Cobham [C] has
christened "'meta-numerical analysis, "' notably including Rabin
and Scott's paper on finite automata [RS] and R, W, Ritchie's%*
work on predictably c:ornputa.b’le functions [R].

Necessarily the class,';( , of functions computable by
Loop programs is a proper subset of the recursive functions.
We ultimately show that"{ is precisely the class of primitive
recursive functions,

Loop programs are designed to exploit the power of a
construction familiar in higher-level languages; the LOOP in-

struction of Loop programs is analogous to the DO statement of

*The second author is unrelated to R, W, Ritchie

1.

Fortran and to special cases of the FOR and THROUGH state-

ments of Alpol and MAD, We show that the running time of a

Loop program for a given input is determined essentially by
the depth of nesting of its Loop instructions,

The theorems in the paper are of primarily theoretical
interest; the functions with which we are concerned are almost
wholly beyond the computational capacity of any real device,
We believe that readers with an orientation toward practical
programming may nevertheless find some of the results

provacative,

2, Loop programs, A Loop program is a finite sequence of
instructions for manipulating non-negative integers stored in
registers, There is no limit to the size of an integer which
may be stored in a register, nor any limit to the number of
registers to which a program may refer, although any given
program will refer to only a finite number of registers,
Throughout this paper upper case English letters will be used
as register names, and a sequence of register names
X XZ’ vees X will be abbreviated as fm. We let N be
the non-negative integers and abbreviate a sequence of non-
negative integers XirewssX a8 ;m. Boldface letters
stand for programs, and if P is a program Reg (R) will be
the set of register names appearing in P

Instructions are of five types: (1) X =Y, (2) X =X + 1,
{(3) X =0, (4) LOOP X, (5) END, where "X'" and "yn may be
replaced by any names for registers,

SHouLD USE 1) Xe—Y

(2) Xe+— X4\ (3) X+"0 @) Loofx (5} END



2,

2.1 Definition, The cl L of L ams 1s * L
on, e class of Loop programs 1s Un:o n
where the classes Ln are given by
(i) L.0 is the class of finite sequences of type (1), (2), and
(3) instructions,
L
(i) n+l 2 L'n’

{iiiy 1f 9_, R, ¢ L and P is Q concatenated with R

nit

lJn+}.’
(iv) If Q Ln’ and P is a type (4) instruction concatenated

then P

with Q concatenated with a type (5} instruction, then

—

g I"n+l’

{v) The only members of Ln are those implied by

+1
clauses (ii) - (iv).

The first three types of instructions have the same interpreta-

tion as 1n several commmon languages for programming digital

computers, "X = ¥Y'" means thal the integer contained in ¥

is to be copied into X; previous contents of X disappear, but

the contents of Y remain unchanged, '"X = X + 1" means that

the integer in X is to be incremented by cne, "X = 0'' means

that the conlents of X are to be set to zero, These are the

only instructions which affect the registers,

The instructions in a Loop program are normally executed
sequentially in the order in which they occur in the program,
Type (4) and (5} instructions affect the normal order by indica-
ting that a block of instructions is to be repeated, Specifically
if P is a Loop program, and the integer in X is x, then
"LOOP X, P, END'" means that £ is to be performed x
times in succession before the next instruction, if any, after
the END is executed; changes in the contents of X while P is

being repeated do not alter the number of times E istobe

repeated, The final clause is needed to ensure that executions

of Loop programs always terminate. For example, the

program

(2.2) LOOP X
X=X +1
END

is a program for doubling the contents of X, rather than an
infinite loop. Note that when X initially contains zero the
second instruction is not executed,

By (2.1), type (4) and type (5) instructions occur in
matched pairs like left and right parentheses, so that the block
of instructions affected by a type (4} instruction is itself a Loop
program and is unambiguously determined by the matching
type (5) instruction, A program is in Ln if and only if the
LOOP-END pairs are nested to a depth of at most n, For

example, in the L_ program

2

(2.3) LOOP Y

END
END
type (4) and {5} instructions are paired as indicated by the in-
dentations, If X and Y initially contain x and y, execution

of (2.3) would leave x > y in X, where x 4 y equals



Xx -y if x > y, and is zero otherwise,

Given the initial contents of Reg (E), the running lime
of a Loop program B will be measured by the number of
individual instruction executions required to execute B It
should be clear how to count the number of times instructions
of types (1), (2), and (3) are executed, but some further
interpretation is needed for instructions of types (4) and (5),
Associate with each LOCP-END pair in E a special register
distinct from Re. (P). Execution of "LOOP X" places the
integer in X into the special register, and the next instruc-
tion to be executed is the matching END instruction, Execu -
tion of "END'' tests the associated special register for zero.
1f the special register contains zero, the next instruction to be
executedis the one immediately following, Ifthe special register
does not contain zero, its contents are decremented by one,and the
next instruction to be executed is the vne immediately follow-
ing the matching type (4) instruction, For example, if initially
X contains x ¢ N, execution of program (2, 2) requires one
execution of "LOOP X", x executions of "X = X + 1", and

¥ + 1 executions of "END", so that the running time is 2x +2,

(2. 4) Definition, Let P be a Loop program and Xl' 500 'Xm

be the members of Reg (P) in order of appearance in 2.

The value T : NU~ N equals the

P { m) of the function TP

.
running time of P when Xi initially contains X,

1< i< m, providing this number is finite,

3.

A formal definition of execution of a Loop program and of
running time can be given, though we shall not do so, In the

next section we show that TP is always defined,

Lol

3. DBounds on running time, We now describe exactly what
is meant by the c¢laim that the running time of a Loop program

can be bounded by inspection of the form of the program,

{3.1) Definition, If g; N — IN, the function h; N2 —- NN is
called the iterate of g providing
h{z, 0) = z
hiz,y + 1) = g {h{z, y))
The iterate hiz, y}) is also written as g(Y) (z).
Thus, g(y) (z) = glgl...g(z),..)), the composition being

taken y times,

(3.2) Definition, For ne N, the functions fn: N —- N are
defined by the equaticons

£,(0 =1,

£,1) = 2,

fo(x)=x+2£or x> |1,

_ g (x)
fn+1(x)_fn (1)

We will say that gt N~ — N is bounded by £ N - N
whenever g(xm) < f(max{xln}) for all x ¢ N: max {xm}
is the largest member of {xm} .

(3.3) Bounding Theorem, Let E be a program in Ln. Then

there is a p > 0, which can be found eifectively from F, such

that fn(P) bounds the running time of }:



'rP(;m) is defined whenever execution of f_ with (3.4) Lemma, Forall x, pe N
Reg (P) initially containing ;m can be completed in a finite (i) fl(x) =2x + (1= x)
number of instruction executions, Moreover, T_ can be
i 5 i) £ PFDGy = 2P . £ > Pt

Lol
computed effectively by executing P and counting individual
o) (iii) fz {x) = 2%
instruction executions, provided that every execution of P

eventually can be completed, It follows that when we have The proof of (3.4) is left to the reader.

proved that TP is bounded by fn(p) , we will have proved The function f3(x) is also easy to describe;

{3. 3}, and shown incidentally that Tp is effectively 2

computable, - K : height x
This raises an interesting point about bounding the running f3(x) = 22

time of l.oop programs by inspection, It is easy to prove that (3.5) Lemma, Forall n, p, xe N,

TP is totally defined, and hence effectively computable, with- (i) fn(x) > x +1,
Ll
out introducing the functions f . Accordingly, the assertion (i) £
n ii
that L.oop programs can be bounded a priori becomes trivial-- n

{

) . o . .
P (x) is nondecreasing in n and increasingin p,x,

+1
one can always bound P by TP' (iii) 2- fn(P)(x)i fn(p )(x) for n> 1,
—
Cf course bounding the running time of P by T, is not (iv) [fn{p)(x’lzi fn(p+2)(x) for n> 2.

o
very informative, for it amounts to 'predicting' that P will
.

) ) The lemma can be proved by induction; we omit the
run as long as it runs, One would at least expect bounding

details.
functions which are in some sense sufficiently comprehensible

Proof of the bounding theorem: The proof is by induction
that they provide more information than the previous tautclogy,

on n and definition {2, 1),
An inevitable difficulty is that bounding functions must grow at

Let P be a program in L _ with k registers, and let
such extraordinary rates that their sizes can hardly be called = n

m = max ix }, where x, are the integers initially in Reg (P).
comprehensible, Nevertheless, a function fn(p) is a more - k™’ *x g b4 2eg (m)

If n=0, then B has no loops and so T_ is identically

P

satisfactory bound than TP on intuitive as well as theoretical E
equal to the length of P, Let p > 0 equal the length of P;

grounds, as indicated by the next two lemmas (see also (5, 3)).
then
T, x)=p<f. P (0)< £ P (m
P 7k 0 =% :



If n> 0, assume that (3,3) is true for Pl 1f

}2 ¢ L_ by ({2, 1.ii) so that ‘E € Ln-l’ then Tp i: blounded
by In-l P for some pe N, By (3. 5.1ii) TP Ts also
bounded by fn(p) . -

Now, suppose that f: € Ln by {2, 1, iv), so that P equals
TLOOP X' concatenated with 9 € Ln_1 concatenated with
WEND", We separate the cases n=1, n> 1,

If n=1, then TQ is identically equal to q > 0, The
running time of E is at most 1+q+x+ (x+1) when X
initially contains x, by the same argument used for program

(2. 2). Since x < m,

TP(;k) <{g+l) - m+2< 2% m+2 < fl(q)(m) +2 < fl(q+2)(m).

e

If n> 1, assume that T . is bounded by fn (lq) for

Q

qe¢ N, After one execution of Q the largest inteper in any
. . (g} (g+1)
register is fn-l {m)+m < fn—l

tion execution can increase the largest integer in the registers

(m) because each instruc-

by at most one, If Q is now repeated because of the loop, it

requires at most f (a) (fn(‘;-+l)

nel {m)) instruction executions

and leaves at most
(q) ;. (g+1) (g+1) (2: (q+1))
fn-l (fn-l {m)} + fn—l {m) < fn-l {m)

in any register. An obvious induction implies that the gth

i. (q+1))

1 {m) instruction

repetition of Q requires at most fn(

executions, Therefore,

Laal

But by {3, 5) and the definition of fn,

(m- (q+1)) (m- {gq+1}))
= +{g+2
£ (m)< £ (f_(m}) = { (m-(q+2)),
and further calculation using (3. 5), especially (3, 5,iv) since
n> 2, implies

TE(;k) < 1 T .

The one rermaining case is that _1: € Ln by (2, 1, iii}, so
that P is Q concatenated with R, where Q, Re¢ L . The

. afu e L ad n
proof for this case is similar to the previous one and is left
to the reader,

This completes the proof that every Pe L.n is bounded
by fn(p) for some pe N. Moreover, by hypothesis the

integers g, r mentioned in the proof can be found effectively,

| so that p can also be found effectively, Choosing p -equal to

six-times the length of P is-sufficient.

4, Functions computable by Loop programs, If a set of
registers is designated for storing input and output, a Loop

program describes the computation of a function,

(4.1} Definition, Let }—(m be distinct register names, m > 0,

and P be a register name which need not be distinct from

Xm . If P is a Loop program, the m +2 - tuple <P, Xm, P>

will be called a program with input and output, Xm being the

input registers and P the outpul register, The function
put reg p g

m .
Tolx,) < 142 fi‘_‘f””(mn(mﬂ)i 2+m +m-ff)“_“l' (@t ),

f: N — N is computed by <P, Em’ P> providing that f(;m)
equals the contents of P after execution of P when Xi

initially contains X 1<i < m, and all other members of



6.

R_eg (R) initially contain zero,
For example, if P is the program {2,3), then
<P,X,Y,X? computes x* y, and (f, X,Y, Y> computes
the projection Py (x,¥v)=vy.

{4. 2) Definition, o‘(: is the set of functions computable by

Uso X

Obviously, anD.(n for all ne N. As we remarked

programs in Ln with input and output, ofz

in the introduction, Loop programs cannot compute all the
functions which are formally computable, but they are never-
theless extremely powerful,

The full power of Loop programs will be revealed as we
prove that & includes a class of functions familiar in re-

cursive function theory: the primitive recursive functions,

(4.3) Definition, For 1< i ¢ m let p._: N — N be the

1
projection on the ith coordinate: p, {x_ )=x, . The class
im  m i

GD of primitive recursive functions is the smallest class

satisfying
{i) P contains the projection functions, the successor
function (pllﬂ)’ and the function of one variable
identically equal to zero.

(i) If  N® = N and g: N° = N arein (P, then
£ Nm-l-n-l —N 1is in @ where

N,

f(Xm+n-i-1) = h(xm-i’ g(xm, ‘e ¥min-l

(iii) If g: N” - N isin 6) and m:
k .
{1,...,m}—-{1,...,k}, then f:IN — I is in 63
where

f(xk) LS g(Pﬂ_(l )' k(xk)' *eay pv(m)' k(xk))l

(iv) If g: ]N'm - N and h: Nm+2 —IN are in @ s
then f: 1Nm+l — N is in @ where
fx_, 0 =g(x_)
fx_,y+l) = hix_,y, fx_, ).

The fourth clause of (4,3) is the standard scheme for

defining f from g and h by primitive recursion,

The second and third clauses of (4, 3} together imply that
@ is closed under composition of functions, permutation of
variables, identification of variables (e, g,, obtaining
hi{x) = f(x, %) from f£(x,y)}, and by (4,3.1i) substitution of
constants, all of which we will heceforth call the operations of

It is well-known that /g includes all the functions normally
encountered in digital computation and number theory, Addition,
multiplication, and exponentiation are all members of 6), as
are functions yielding the decimal expansion of sin{x), the xth
prime number, etc, In fact, it requires a careful analysis of
the definition of (P to find a function which is not primitive

recursive,



(4. 4) Theorem, Every primitive recursive function is
computed by some Loop program with input and output,
Proof: The proof is by induction on definition (4, 3).

It is obvious from the definition of type (1), (2), and (3)
instructions that the functions which are in @ by (4. 3.1) are

also in x

We now prove that r g satisfies (4, 3.1ii)-(4. 3,iv) by

.

combining various programs, and this will imply that
£ 2 P

interacting improperly because of common register names,

In order to prevent different programs from

extend the function Reg to programs with input and output by
letting Reg (<}3,Em,1=>) = Reg (P) v {SEm,P]. When the
registers of two programs with input and output are disjoint we
shall say that the programs are compatible, There is
obviously no loss in generality in assuming below that the
programs to be combined are compatible,

Suppose f is defined from g, h by (4.3,ii}), Let

< E,Xm_l,Y,H ? and (9,Xm,...,xm+n_l,c;> compute
h and g respectively, A program for f is simply
<£’Xm+n-1’H> where F is
(4. 5) g
Y = G
H
faald

Now suppose f is fefined from g and w:

{1,...,m} ={1,...,k} by (43.iii), Let < G, Y ,G»

~' "m
compute g, and let Xk be register names not in Reg

( <GY_,G>).

Then <FfX,G? computes { where F is
~ k A
Y =
(4. 6) 1 X"(”
m m(m)
=

Finally, suppose that f is defined from g, h by (4. 3.iv}
and that < G ?m,G> and (‘I;I, Em, V,W,H > compute g
and h respectively. Then < F,im,U,F) computes

f, where F is
o

(4. 7) Reg (g) =0 clear registers of G
Y =X set up arguments of G
in m A
G do G
Pt E ot
F=G F=:E(xm. 0)=g(xm)
C= clear repetition counter
LOCP U
Reg (H) = 0 clear registers of H
Z =X
m m
v =¢C set up arguments of H
W =F
1 d H
F = H F=Hx ,C,F)=f{x ,Ctl)
m m
C = C+1 count repetitions
END



The reader can verify that I behaves as outlined, We
have used )_(m, U,F, and C as register names not appear-
ing in the programs with input and output for g and h, The
expressions "Reg (G) = 0", “?m = }fm", ete,, are obvious
abbreviations for finite blocks of instructions, This completes
the proof of (4, 4).

(4,8) Corollary, For n> 0, x: is closed under
substitution,
Proof: If g, He Ln then the programs (4.5) and (4,6} are

also in Ln by definition (2, 1),

(4.9) Corollary, If g and h are in xn_'_l and fn

respectively, and if { is defined from them by primitive

recursion (see (4,3.,iv}} then fe ’{nﬂ. 5
Proof: The depth of nesting of loops in (4.7) is the greater
of one plus the depth of H, and the depth of G; if G « Ln+1

and H e Ln, then the depth in (4, 7) is at most ntl,

5., A hierarchy of functions, The family {fn};o forms
an infinite hierarchy of sets of functions, namely,

o?: % -ZT 5 .Zz S v . One of the implications of this
fact is that depth of loops in a Loop program can be used to
classify the complexity of the functions computable by the

program,

{5.1}) Lemma, If { ¢ {, then { is bounded by f(p) for

n
some pe N,
Proofi The function f is bounded by the running time of any
program with input and output which computes f, plus the
largest integer initially in the registers of the program. If
n = 0, this means f is boundedb, x +q where qe¢ N is
the length of a program for £, If n > 0, f is bounded by
fn(q)(x) + x for some gqe¢ IN. In any case,f isbounded by fn(p).
where p=q +1.

(5. 2) Definition, The function f+ N - N ma_!'oriz,es the
function g;: IN — N providing f(x) > g(x} for all sufficiently
large x ¢ N,

(5, 3) Lemma, Forall n, pe N, f{ majorizes f,(qp)‘

ntl
Proof: By definition {3.2}if x> 2, then fl(x)= 2x and

(p) (p)
fo

{x})=x + 2p, so f majorizes fo for any fixed p,

1
If n> 0, we proceed by induction on p. By {3, 5, 1),

majorizes f (),

)
fn+l(x) > X = fn (x). Now assume that an S



then
27 e < € P2 2y = 1 P 2, forxy 5 by

(3. 5), and

£ P -2ny < £ PP 2= P P2y s e her*-2h

(p)

for large x because f majorizes fn , and

n+l

£ B

+l(x-2)) = fn+l {x), by definition (3, 2) .

eof '(,and

{5.4) Theorem, For all neN, f ntl™

f;ﬁ-l g xn'

Proof: We need only show that fn-!-l( i’;ﬁ_ and f é oZp

By (5.1) and (5,3), f is a function of one variable

n+l
which majorizes every function of one variable in AZ;, and
so f certainly is not in ;{.

n+l n

It is easy to write an Ll program which can compute f
so f ¢ '(1 . Assuming f, 0{ then the iterate of £,
namely f h'r)(z) regarded as a function of y and z, is in
J(nﬂ . This follows from corollary (4, 9) because iteration,
(3.1), is a special case of primitive recursion, (4.3, iv),

fog(x) = fn(x) (1} is obtained by substitution from

i‘n-l-l’ and so fn+l ¢ oZ‘

nt+l *

Therefore,
a function in By induction,

the proof is complete,

Theorem (5.4} is a rigorous verification that depth of
loops is a measure of the power of Loop programs.
Obviously functions computable with a small number of loops
can be computed with additional unnecessary loops, but there
are functions, for example fn, which can be computed by a
program with loops nested to depth n but not less,

We also conclude that the bounds of theorem (3. 3) are
reasonable in the following sense: for every n, p ¢« N,
there is an Ln prograrn whose running time is bounded by no

(p)

function smaller than f . For example, we know that

fn(p), for fixed p, is obtalned by substitution from f .

(p)

Therefore, a?’, and obvicusly any L program
n

(p)

which computes f requires nearly f (p) instruction

executions just to leave the answer in 1ts output register,

6. Characterization of ’Zﬂn by running time, The bounding
theorem of section 3 implies that every function in &: can
be computed within time fn(P) for some pe N, This kind of
bound on running time is commonly taken as a rough measure
of complexity., Thus, context-free languages are 23 recog-
nizable, and context-sensitive languages are at worst 221
recognizable, where £ is the length of an input word, * a?::
can be characterized as precisely the fn computable functions,

* - .
These bounds on running time apply to Turing machines and
not Loop programs, but for computations bounded by f2 or
more, the distinction is unnecessary {see [C], [MR]},



io,

{6.1) Theorem. For n> 2, a function is in afn if and

only if it can be computed by a Loop program with input and

(p)

output whose running time is bounded by fn for some

p ¢« N,
Half of theorem {6, 1) follows immediately from the

bounding theorem, The other half is proved by showing that if
(p}

the running time of a Loop program is bounded by fn , then
regardless of the actual depth of loops, the program can be
rewritten as a program in Ln (providing n > 2). Specifically,

(6.1) follows from

(6. 2) Lemma, If P is a Loop program and T_ is bounded

P
by fn(P) for some pe¢ N, n> 2, then there is an M e Ln such

that <P,X > and <M,Xk+2>

e'I_{_«_a_g(‘li), ke N,

k+z 7 compute the same

function for any X

k+2
Proof;: M will be a "mimicking' program for P, If P is the
F aand L R
sequence of instructions 11,12,,.. ,1 , and Reg (E_} = {im}’
then ,IY,: will contain subprograms 3-1’5-2' 500 ’-I*s’ and Reg (M)

will include X A . B and C .
m s s s
Register Ai' 1< i < s, will always contain zero or one.

Each J'-i’ l< i < s, will be an L program which tests Ai

1
for one. If the test is successful, —Ei has the same effect on

X as executionof I, in P, and I, will set A, and B, to
m i -~ i, i i
zero and Bj to one, where I, is the next instruction which

would be executed in P, If the test is unsuccessful or there is

no next instruction, I.1 will have no effect, The registers Cs

are used to count repetitions of loops,

If we let M, be the LZ program

2
(6.3) Bs o flag the first instruc-
Bl=Bl+1 tion of P
LOOP T
A =B
s 5
&
25)
I
-3
END

then < I*i{z, im’ T, Xi > will obviously compute the integer
left in Xi after t instruction executions in the execution of
P, where t is the integer initially in T,

Since T

P

. (p)
P is bounded by fn . we need only precede MZ
by a program which places an integer larger than fn

(p)(m) in
T, where m is an integer larger than the initial contents of
im . Itis easy to find an Ln program M n which does this,
and which also leaves the contents of Xm unchanged, There-
fore, M will be the concatenation of Mn and MZ’ and since
n> 2, M € Ln.

To complete the construction we need only exhibit the L1
1:>rogram5:“1;i .

If Ij is a type (1), (2), or (3) instruction, then n]-:i will

be



{6, 4) LOOP Ai test Ai for one
A =0
1
B =0
i
-3 t i i
i+ " Bi+l+l flag the next instruction of i
I execute I
i i
END

If Ii is the type (4) instruction "LOOP Xj", and the

matching type (5) instruction is Ik, then "'I‘i will be

(6, 5) LOOP A‘1 test Ai for one
A = 0
i
B =0
i
Bk= B k+l flag the next instruction of Pl
Ci = X load the repetition counter
]
END

Finally, if Ii is 2 type (5) instruction, and the matching

type (4) instruction is I , then a{i will be

kl

If i= s, omit this instruction,
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(6.6} R=0 set two flags for the repetition
S=0 ¢counter test
S=S+1
U= Ck copy the repetition counter
V=20 clear the auxiliary storage
LOOP U test the repetition counter for
non-zera
R/ U= Ck + 1
V=V +1
R=20 reverse flags if the repetition
R=R+1 counter is non-zero
S=0
END
LOOP Ai test Ai for one
A =0
i
B. =0
i
R

Kl
B, W =5% flag the next instruction of P
i+l s

C =U decrement the repetition counter

The reader can verify that the programs -Ei behave as
ocutlined, and hence that M satisfies (6, 2),

The proof is complete,

If i = s, omit this instruction,
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7. The complexity problem, The running time of an Ln
program is bounded by fn(p) for some p, and there are Ln
programs that actually run that long. On the other hand, we
have just considered I_.n programs whose running times can
be bounded by fm(p) for m < n, This naturally suggests the
question: can one tell if a program runs more rapidly than its

loop structure indicates? The answer is no,

(7.1) Definition, The complexity problem for Loop programs

is; given P e L _, determine whether the running time of P
Pt D

p)
is bounded by f P

-1 for any pe IN.

(7}
ALSs caAM NoT TELL 17 P Rums < ;m‘-—‘ Ao,

(7.2) Theorem, There is no effective procedure for solving

the complexity problem for Loop programs,

In order to prove (7, 2}, we shall have to appeal to two
familiar results from the theory of computability, First the
halting problem for Turing machines is effectively undecidable;
second, there is a primitive recursive function t: INZ—- N
such that t{e,x) = 0 if and only if the Turing machine with
Godel number e halts on input e in fewer than x steps, and
when t{e,x) # 0, then t(e,x)=x, (cf.[D], [K]).

Proof; We show that if the complexity problem had an effective

solution, then sco would the halting problem for Turing machines,

Since a?.’g p, the function t is in ’-(no for some

n Given the L, program for t, and given an integer e, it

o
should be obvious that a program Ie ¢ L

. can be con-

structed with the following property: when a designated register

of A'I-‘-e’ say register X, initially contains x, then execution of

'Ie leaves t{e,x) in X

Now let -Ii‘n be an L.n program whose running time is
not bounded by fn_(ri)) for any p. There is no loss of gener-
ality if we assume _En is of the form "LOOP X, 9, END" for
some Qe Ln-l' Suppose that n > Ny and let 'Ee be the

program T followedby F , Clearly, P ¢ L
=€ ~n ~a n
If the Turing machine with G3del number e halts on
input e, then only finitely many numbers placed in X will
lead to the execution of the subprogram fn in Pe’ in which
case the running time of ‘Ee is bounded by fn‘p} for some

p. Conversely, if the Turing machine does not halt, the

subprogram -F-n is always executed, and the running time of

P, is not bounded by fn-l{p) for any p. Therefore, if we

could determine from Ee¢Ll, whether or not the running time
of P, was bounded by fn-(lp) for any p, we could also Bolve
the halting problem for Turing machines, Hence, for n > nys
the complexity problem is effectively unsolvable,

The value of n, in the preceding proof happens to be two,
The easiest way to prove this is by constructing an L, pro-
gram which rmimics" Turing Machines, The construction
is similar to the one in the previous section, and makes the

existence of a primitive recursive function t an unnecessary

assumption in the proof of (7, 2).



8, We sketch a proof of the fact that the functions computable
by Loop programs with input and output are precisely the

primitive recursive functions,

{8.1) Theorem. ,Z’: ®.

Proof: Let < ‘__P,F(m, Y » be a Loop program with input
and output, Given <‘13,§m, Y), it can be shown by methods
closely paralleling those used in section 6 that there is a
primitive recursive function MP: NmH—- N with the
following property: if y exceeds the running time of P with
input ;m. then ME(;m,y} equals the number in Y (the
output register of P) after x has been placed in X and
P executed, Nowif P ¢ Ln, there is a p > 0 such that fn(p)
bounds TE; that is, fn(p) (—m{;m}) exceeds the number of
steps required to execute P with input x_ .

Suppose f is the function computed by <£, Xm, Y >
then obviously

) = M, s £ Pmax(x D,

Since fn is defined by iteration, a special case of primitive
recursion, fn is primitive recursive. The function max of
m variables is also primitive recursive, The right side of
the equation above is defined by substitution from primitive
recursive functions, and therefore is a primitive recursive
function, This shows that 6’ =2 pza. Since by (4, 4)
R&? @ , the theorem is proved,

The fact that f: 0> suggests that the hierarchy

fos OZ’I $ 'Zéz % +e«e, may have an analogue

more directly related to the definition of primitive recursive

13,

63 be the class
n

of functions definable using primitive recursions nested to a

functions, This is in fact the case, Let

depth no greater than n; that is, @n is the class of func-
tions obtained by closing under substitution the functions

obtained by one primitive recursion from @n-l' * We

OZ‘;-‘- @n’ for n> 4,

prove in {MR] that

A hierarchy eog El S

functions has been studied by Grzegorczyk [G], The

«esy of primitive recursive

Grzegorczyk classes are defined by closure properties rather
than programs, e.g., £3 is the smallest class containing

x + vy, and closed under substitution and the functional opera-
tions which transform f£(x,y) into gix,z)= Z:O f{x,i} or into

hix, z) = rriz_of(x, i), The class 83 is known as Kalmar's

elementary functions,

a{ equals the elementary functions; in

fact for n> &, £n+1= o(ﬁ. The Axt and Grzegorczyk

Our class

hierarchies will be considered in a forthcoming paper by the

authors [MR].

"The definition is due to Axt [A].



| be powerful enough to describe infinite computations,

9, Summary, Can the running time of a program, regarded
as a function of the program inputs, be bounded by inspecting
the structure of the program? In general the answer is no,
for a fundamental theorem of the theory of computability
asserts that if a programming language is powerful enough to
describe arbitrarily complex computations, il must inevitable
Further-
more, descriptions of finite and infinite computations are in
general indistinguishable, so there is certainly no way to
choose for each program a function which bounds its running
time,

In Section 2 of this paper we defined a class of programs,
called Loop programs, which do have the property that the
running time of any program in the class can be bounded by a
particularly simple function of its inputs, Furthermore, the
bounding function can be determined in a simple way from the

fof

functions computable by Loop programs is a proper subset of

structure of the program. Necessarily, the set

the set of computable functions, but in fact all of the functions
ordinarily encountered in digital computation are in -Z’
Loop programs are classified by the depth to which
"LOOP' instructions are nested, These instructions resemble
the DO statement of Fortran, and the FOR and THROUGH
statements of ALGOL and MAD, We proved in Section 3 that
— -
every Loop program with loops nested to a depth of at most n
has running time bounded by a particular function, fn’ possibly
composed with itself,
We offered in subsequent sections of the paper a collection

of theorems designed to support two contentions: first that

l.oop programs comprise a distinctly non-trivial and interest-
ing programming language, and second that the bounding
procedure applied to any given Loop program can provide
significant information about that program. In particular we

proved that

(1) There are Loop programs with loops nested to depth
n whose running time is no less than the fn’

{2) There are functions which can be computed with loops
nested to depth n but not n-1, for every n> 0,

{3} If the running time of a Loop program is actually
bounded by fn' then however deeply its loops may be
nested, the program could be rewritten with loops
nested no deeper than n, for every n> 1

{4) There is no effective procedure to determine if a
program with loops nested to depth n actually has

running tirme bounded by f for any n > 3,

n-17

(5) The functions in Of&re precisely the primitive
recursive functions,

Loop programs illustrate several of the theoretical issues

involved in estimating the running time of programs,
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