
A formal proof of
Borodin-Trakhtenbrot’s Gap Theorem

Andrea Asperti

DISI, University of Bologna
Mura Anteo Zamboni 7, 40127, Bologna, ITALY

Email: asperti@cs.unibo.it

Certified Programs and Proofs
December 11-13, 2013, Melbourne, Australia

A.Asperti A formal proof of Borodin-Trakhtenbrot’s Gap Theorem CPP 2013, Melbourne, Australia 1

A long term program

A formalization of the well known Gap Theorem of Complexity
Theory, asserting the existence of arbitrarily large gaps between
complexity classes.

A case study in a much wider research program, aiming to a

synthetic theory of complexity
through a

reverse investigation
of its main results.

A.Asperti A formal proof of Borodin-Trakhtenbrot’s Gap Theorem CPP 2013, Melbourne, Australia 2

Synthetic Complexity

An analogy with HoTT:

The HoTT Book, pag.59

An important difference between homotopy type theory and classical homotopy
theory is that homotopy type theory provides a synthetic description of spaces,
in the following sense. Synthetic geometry is geometry in the style of Euclid:
one starts from some basic notions (points and lines), constructions (a line con-
necting any two points), and axioms (all right angles are equal), and deduces
consequences logically. This is in contrast with analytic geometry, where notions
such as points and lines are represented concretely using cartesian coordinates in
Rn - lines are sets of points - and the basic constructions and axioms are derived
from this representation. While classical homotopy theory is analytic (spaces and
paths are made of points), homotopy type theory is synthetic: points, paths, and
paths between paths are basic, indivisible, primitive notions.

A.Asperti A formal proof of Borodin-Trakhtenbrot’s Gap Theorem CPP 2013, Melbourne, Australia 3

Synthetic Complexity

Classical Complexity Theory is analytical.

One starts with a specific computational model (typically, Turing
Machines) and concrete resources (tapes, registers, discrete
transitions) and derives the basic notions and results from the
given representation.

This is immediately followed by the claim that (up to some
polynomial factor), the specific model does not matter.

But, WHAT MATTERS, then? Answering the question would
bring us to a synthetic approach to Complexity Theory.

A.Asperti A formal proof of Borodin-Trakhtenbrot’s Gap Theorem CPP 2013, Melbourne, Australia 4

Not a matter of expressiveness

Passing from an analytical approach to a synthetic one, one does
not expect to gain expressiveness (on the contrary, one could loose
some).

I having a more symbolic (logical) approach (more fun!)

I open a new perspective on the field

I possibly suggest unconventional models

A.Asperti A formal proof of Borodin-Trakhtenbrot’s Gap Theorem CPP 2013, Melbourne, Australia 5

A reverse approach

Try to avoid any prejudice and conceptual bias.

Adopt a reverse methodological approach, reconstructing from
proofs the basic notions and assumptions underlying the major
results of this field.

Methodology is similar to reverse mathematics (Friedman [10],
Simpson [12]), but aims are different.

The final goal of a synthetic approach to complexity naturally
entails the use of formal proof assistants.

A.Asperti A formal proof of Borodin-Trakhtenbrot’s Gap Theorem CPP 2013, Melbourne, Australia 6

A minimal linguistic framework

Where do we start?

We need a minimal linguistic framework to talk about the
complexity of a not better specified computational agent.

A.Asperti A formal proof of Borodin-Trakhtenbrot’s Gap Theorem CPP 2013, Melbourne, Australia 7

Blum’s abstract framework

Abstract complexity measure [Blum [7]]

A pair 〈ϕ,Φ〉 is an abstract complexity measure if ϕ is a principal
effective enumeration of partial recursive functions and Φ satisfies
the following axioms:

(a) ϕi (~n) ↓↔ Φi (~n) ↓
(b) the predicate Φi (~n) = m is decidable

Not a real axiomatization.
Often used in conjunction with Church’s Thesis.

A.Asperti A formal proof of Borodin-Trakhtenbrot’s Gap Theorem CPP 2013, Melbourne, Australia 8

Blum vs. Kleene

Blum’s relation {
ϕi (n) = a

Φi (n) = m

is equivalently expressed by Kleene’s T predicate

T (i , n, a,m)

expressing that the computational agent i on input n returns a
with computational resources m.

A.Asperti A formal proof of Borodin-Trakhtenbrot’s Gap Theorem CPP 2013, Melbourne, Australia 9

Basic framework

We shall work with a functional version of T , namely a ternary
function U returning an optional result.
The intuition is that

U(i , n,m) =

{
Some (a) if T (i , n, a,m)

None otherwise

But this is an intuition. The only assumption on U is monotonicity.� �
axiom U: nat → nat → nat → option nat.
axiom monotonic U: ∀i,n,m,y. n ≤m →

U i x n = Some y →U i x m = Some y.� �
In other words, we work with a “bounded” applicative algebra.

A.Asperti A formal proof of Borodin-Trakhtenbrot’s Gap Theorem CPP 2013, Melbourne, Australia 10

More axiom “on demand”

For instance, the basic framework suffices for the proof of the gap
theorem.

Notation:

ϕi (n) ↓ t ⇔ ∃a.U(i , n, t) = Some a
ϕi (n) 6↓ t ⇔ U(i , n, t) = None

A.Asperti A formal proof of Borodin-Trakhtenbrot’s Gap Theorem CPP 2013, Melbourne, Australia 11

The gap theorem

Gap theorem [Borodin [9]]

Let g be a nondecreasing recursive function such that ∀x .x ≤ g(x).
Then there exists a nondecreasing recursive function t such that, for
any i and for any sufficiently large n,

ϕi (n) ↓ t(n) or ϕi (n) 6↓ g ◦ t(n)

“no matter how much better one computer may seem compared to
the other, there will be a t such that the set of functions
computable in time t is the same for both computers” [9].

A.Asperti A formal proof of Borodin-Trakhtenbrot’s Gap Theorem CPP 2013, Melbourne, Australia 12

informal proof

Define t as follows:

I t(0) = 1,

I t(n) = µk ≥ t(n − 1){∀i < n.[ϕi (n) ↓ k or ϕi (n) 6↓ g(k)]}
Then:

1. for any n, k exists, since forall i < n if ϕi (n) ↑ then
∀k .ϕi (n) 6↓ g(k), and if ϕi (n) ↓ then ∃k.ϕi (n) ↓ k .

2. k can be found recursively, since ϕi (n) ↓ k and ϕi (n) 6↓ g(k)
are decidable predicates.

3. t satisfies the theorem, since n > i implies that either
ϕi (n) ↓ t(n) or ϕi (n) > g ◦ t(n).

QED.

The fact that ϕi is a principal enumeration of all partial recursive
functions is not used.

A.Asperti A formal proof of Borodin-Trakhtenbrot’s Gap Theorem CPP 2013, Melbourne, Australia 13

informal proof

Define t as follows:

I t(0) = 1,

I t(n) = µk ≥ t(n − 1){∀i < n.[ϕi (n) ↓ k or ϕi (n) 6↓ g(k)]}
Then:

1. for any n, k exists, since forall i < n if ϕi (n) ↑ then
∀k .ϕi (n) 6↓ g(k), and if ϕi (n) ↓ then ∃k.ϕi (n) ↓ k .

2. k can be found recursively, since ϕi (n) ↓ k and ϕi (n) 6↓ g(k)
are decidable predicates.

3. t satisfies the theorem, since n > i implies that either
ϕi (n) ↓ t(n) or ϕi (n) > g ◦ t(n).

QED.

The fact that ϕi is a principal enumeration of all partial recursive
functions is not used.

A.Asperti A formal proof of Borodin-Trakhtenbrot’s Gap Theorem CPP 2013, Melbourne, Australia 14

formal proof

The formal proof in Matita is not sensibly more complex.

The main trouble comes from minimization, for which we need to
provide an upper bound.

To this aim, let us consider the intervals

[g i (b), g i+1(b)[for 0 ≤ i ≤ n

and all functions such that

ϕj(n) ≤ gn+1(b) for j < n

We have at most n functions to distribute over n + 1 intervals, so
at least one interval must remain empty.

So, gn(t(n)) is an upper bound for the minimization.

A.Asperti A formal proof of Borodin-Trakhtenbrot’s Gap Theorem CPP 2013, Melbourne, Australia 15

the gap function in matita

� �
let rec gap g n on n :=

match n with
[O ⇒ 1
| S m ⇒ let b :=gap g m in µ {k ∈[b,gˆn b]} (gapb n n g k)
].� �

where� �
definition gapb :=λn,x,g,r .
\big[andb,true] { i < n} ((termb i x r) ∨ ¬ (termb i x (g r))).� �

A.Asperti A formal proof of Borodin-Trakhtenbrot’s Gap Theorem CPP 2013, Melbourne, Australia 16

beyond the gap theorem

In general, in order to prove other theorems of Complexity Theory,
you need to make additional (closure) assumption.

Studying such a minimal logical framework is precisely the purpose
of Reverse Complexity.

A.Asperti A formal proof of Borodin-Trakhtenbrot’s Gap Theorem CPP 2013, Melbourne, Australia 17

Some definitions

code for a function:� �
definition code for :=λf, i .
∀x.∃n.∀m. n ≤m →U i x m = f x.� �

i is running in ∈ O(s)� �
definition C :=λs,i .

∃c.∃a.∀x.a ≤ |x| →∃y.U i x (c∗(s (|x |))) = Some y.� �
f ∈ O(s)� �
definition CF :=λs,f.∃i . code for f i ∧ C s i .� �
A.Asperti A formal proof of Borodin-Trakhtenbrot’s Gap Theorem CPP 2013, Melbourne, Australia 18

A bound interpreter

Internalization of U: a bound interpreter!� �
axiom sU: nat → nat → nat → nat.

axiom CFU3: CF3 sU U.� �
This axiom and little more is enough to prove the hierarchy
theorem, in a completely parametric way ([1]).

A.Asperti A formal proof of Borodin-Trakhtenbrot’s Gap Theorem CPP 2013, Melbourne, Australia 19

Conclusion

We formally revisited the gap theorem in the framework of the
Reverse Complexity program, aiming to a synthetic description of
Complexity Theory.

In different works, we applied the reverse methodology to the
Hierarchy Theorems [1] and the Speedup Theorem [2].

The important point that seems to emerge is the fact that
complexity theory can be perfectly investigated in a subrecursive
setting: no need for universal machines, and general recursion.

The role played by the universal machine in computability is
replaced by bound interpretation in complexity theory.

A.Asperti A formal proof of Borodin-Trakhtenbrot’s Gap Theorem CPP 2013, Melbourne, Australia 20

Work to do

All Complexity Theory a-head.

Next milestone: Savitch Theorem [11].

Synthetic Complexity is a far away dream: avoid to
address the problem directly (too many failures).

A.Asperti A formal proof of Borodin-Trakhtenbrot’s Gap Theorem CPP 2013, Melbourne, Australia 21

Bibliography

Andrea Asperti.

Reverse Complexity.
Submitted for publication.

Andrea Asperti.

Speedup phenomena in subrecursive settings.
Talk at Curien’s Festschrift, Venice 2013.

Andrea Asperti.

The intensional content of Rice’s theorem.
In Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL),
January 7-12, 2008, San Francisco, California, USA, pages 113–119. ACM, 2008.

Andrea Asperti and Agata Ciabattoni.

Effective applicative structures.
In Category Theory and Computer Science, 6th International Conference, CTCS ’95, Cambridge, UK, Proceedings,
volume 953 of Lecture Notes in Computer Science, pages 81–95. Springer, 1995.

Andrea Asperti and Wilmer Ricciotti.

Formalizing turing machines.
In Logic, Language, Information and Computation - 19th International Workshop, WoLLIC 2012, Buenos Aires,
Argentina, volume 7456 of Lecture Notes in Computer Science, pages 1–25, 2012.

Andrea Asperti, Wilmer Ricciotti, Claudio Sacerdoti Coen, and Enrico Tassi.

The Matita interactive theorem prover.
In Proceedings of the 23rd International Conference on Automated Deduction (CADE-2011), Wroclaw, Poland,
volume 6803 of LNCS, 2011.

A.Asperti A formal proof of Borodin-Trakhtenbrot’s Gap Theorem CPP 2013, Melbourne, Australia 22

Bibliography

Manuel Blum.

A machine-independent theory of the complexity of recursive functions.
J. ACM, 14(2):322–336, 1967.

Manuel Blum.

On Effective Procedures for Speeding Up Algorithms.
J. ACM, 18(2):290–305, 1971.

Allan Borodin.

Computational complexity and the existence of complexity gaps.
J. ACM, 19(1):158–174, 1972.

Harvey Friedman and Stephen G. Simpson.

Issues and problems in reverse mathematics.
Contemporary Mathematics, 257:127–143, 2000.

Walter J. Savitch.

Relationships between nondeterministic and deterministic tape complexities.
J. Comput. Syst. Sci., 4(2):177–192, 1970.

Stephen G. Simpson.

Subsystems of second order arithmetic.
Cambridge University Press, 2009.

Boris Trakhtenbrot.

Turing computations with logarithmic delay.
Algebra and Logic, 3(4):33–48, 1964.

A.Asperti A formal proof of Borodin-Trakhtenbrot’s Gap Theorem CPP 2013, Melbourne, Australia 23

