
INFORMATION AND CONTROL 11, 257-265 (1967)

On the Size of Machines*

MANUEL BLU2Cf

MIT, Department of Mathematics and Research Laboratory of Electronics,
Cambridge, Massachusetts

In this paper, the methods of recursive function theory are used to
study the size (or cost or complexity) of machines. A positive result of
this study shews that to a remarkable degree, the relative size of two
machines is independent of the particular way in which machine size
is measured. Another result suggests that in order for programs to be
of economical size, the programming language must be powerful
enough to compute arbitrary general recursive functions, rather than
some restricted subset such as the primitive recursive functions.
Finally, a kind of speedup theorem is proved which is curiously inde-
pendent of whether the measure of complexity be the size or the num-
ber of steps taken by the machines that compute the functions.

INTRODUCTION

B y machines we mean Tur ing machines, idealized compute r programs,
or any idealized devices for comput ing the reeursive functions. The
machines and their size mus t satisfy the axioms of section 1. Section 3
introduces a general set of axioms for step-eounting. These determine
wha t is acceptable as a definition of " a s tep" in a computa t ion . These
axioms are all so fantast ical ly weak t h a t any reasonable model of a
compute r and any reasonable definition of size and step satisfies them.

All our examples refer to a specific class of machines and a specific
not ion of size and step: The class of machines is Dav i s ' (1958) 1-tape,
2-symbol u n a r y radix Tur ing machines, as defined by sets of quadruples.
The size of a Tur ing machine is defined to be the number of quadruples
t h a t define it. A single step in a computa t ion is defined to be a shift of

* This work was supported in part by the National Institutes of Health (grant
5 R01 NB-04985-03), the U. S. Air Force (Aero Space Medical Division) under
contract AF 33 (615)-3885, The Teagle Foundation, Inc., and Project MAC, an
MIT research program sponsored by the Advanced Research Projects Agency,
Department of Defense, under Office of Naval Research contract No. Nonr-
4102(01).

257
Copyright © by Academic Press Inc.

258 BLVM

the tape by 1 square (left or right) or a single print or erasure on a
square.

Our theorems, if not our examples, refer to arbitrary devices and any
measures of size and step-counting tha t satisfy the axioms.

1. The natural numbers are N = 0, 1, 2, . . - . We let (~) with
i ranging over N denote a recursively enumerable (r.e.) sequence of all
partial recursive (p.r.) functions of one variable. We let (~i~), k being
a fixed integer => 2, denote an r.e. sequence of all p.r. functions of k
variables.

DEFINITION (Rogers, 1958). The sequence (9~) has an acceptable Godel
numbering if and only if it satisfies the universal Turing machine theorem
and the iteration theorem, where

UNIVEI~SAL TIMING MACHINE TItEOREM. There exists a partial recursive
function f such that f(i , x) = 9i(x) for all i and x.

ITERATION THEOREM. There exists a recursive function s such tha t
~2(x, y) = ~o~(~.~)(y) for all i, x, y.

THEOREM (Rogers' 1958). / f (9~) and (~) both have acceptable GodeI
numberings, then one of these sequences is just a recursive permutation of
the other, i.e., there exists a 1-1 onto recursive function f: N ~ N such that
~f(i) = ¢~ for all i.
This is a deep theorem with immediate consequences, as we shall see,
for our study of machine size.

We assume tha t each ~ is computed by some set of instructions M~.
M~ may be a Turing machine, a program for an idealized computer, or a
set of equations. We say tha t the sequence (Mi) has an acceptable Godel
numbering if (~o;) has one, and in the remainder of this paper we always
assume that (~) has one. Roger's theorem allows us to assume, and so
we do assume without loss of generality, tha t any two classes of ma-
chines (M~) and (T~) (both with acceptable Godel numberings) are so
ordered tha t M~ and T~ compute the same function 9~.

Axlo~as. A reeursive function I] mapping N (viewed as the set of in-
dices) ---* N (viewed as the set of sizes) is called a measure of the size of
machines, [i [being called the size of Mi , i f and only i f

(1) there exist at most a finite number of machines of any given size and
(2) there exists an effective procedure for deciding, for any y, which

machines are of size y.
Suppose we compare the machines in one class (M~) with those in

another (T~). For example, (M~) might be the class of 1-tape 2-symbol
Turing machines, while (Ti) might be the class of 10-tape 10-symbol

ON T H E SIZE OF M A C t t l N E S 259

Turing machines. The following proposition shows that the size of M~
is approximately equal to the size of T~. I t is an immediate corollary
of Roger's theorem:

PROPOSITION 1. Let II M and II ~ be measures of the size of the machines
(Mi) and (T~) respectively. Then there exists a recursive function g such
that for all i:

1.] i IM --<-- g I i [r (i.e., M~ cannot be much larger than T~)
2. g i i I~ >= l i Ir (i.e., T~ cannot be much larger than M~).

Proof. Let g(x) = max{gl(x), g2(x)} where gl is defined so that
l i]M ----< gl] i Ir and g2 is defined so that g2 [i 1~ ~ l i Ir : To compute
g~(x), note that { i l l i [r = x} is finite and may be determined effec-
tively. Let gl(x) = max{ l i IM] i satisfies l i l t = x}. Let g2(x) =
max { l i l t I i satisfies l i l ~ = x}. Q.E.D.

If M~ is much smaller than M~., then one suspects that T~ is smaller
than T j . This is the content of the following:

PROPOSITION 2. There exists a recursive h such that for all i, j:
1. l i l ~ ~ I J l - ~ l i l ~ " <= h l j l r

2. h i l l , < i j [~ I i l ~ <=]Jlr
Proof. First note that the g in proposition 1 can be made monotoni-

cally increasing by setting
g(x) = 1 + max {gl(x), g2(x), g(x - 1)}.

We assume that g is monotonically increasing. Set h(x) = gg(x):

1. If l i l ~ =<] J l ~ , then l i l t = g l i l M (bY 2 of proposition
1) =< g]j[M (because g is monotonically increasing) =< gg [j [r (by 1
of proposition 1) = h I J I t .

2. If h l i l ~ < I J t ~ , then by a similar argument g l i t r =<
gg [i] ~ = h I i I M <= I J I M ~ g [j IT, and since g is monotonically in-
creasing, I i [~ =< I J I t . Q.E.D.

2. A Turing machine may compute the constant function c~ (x) =
n by storing all n digits of the response inside its quadruples. In general
such a machine will be overly large. For example, if n = 101°, a smaller
machine may output 10 ~° by multiplying 10 by itself 10 times, rather
than by remembering all 101° digits. We show that any infinite r.e. se-
quence of machines contains some machines whose size can be reduced
in this way.

TI~EOI~E~ 1. 1. Let g by any recursive function with infinite range
(g enumerates indices of an infinite sequence of machines).

2. Let f be any recursive function. Then there exist i, j ~ N, both

260 BLUM

uniform in f, g such that
3. ~¢ = ~(j)
4. f] i I < [g(J) [(i.e., M~ is considerably smaller than M~(~)).

EXAMPLe. If f (x) = 100 x, then Mo(~') is 100 times as large as M~,
though both Mg(~.) and M~ compute the same function.

Proof. We give a procedure for determining the two integers i and j
uniformly in f, g. Consider the following set of instructions:

"With inputs x and y, first compute f l Y I. Then compute g(0),
g(1), - . . until the least j is found such that f] y I < I g(J) I. Then
compute ~g(~)(x) and give ¢~(i)(x) as output."

~ (x, y) whose These instructions define a partial recursive function 2
recurslon theorem then supplies an integer index z is uniform in f, g. The " 1

i which is uniform in f, g such that

Equation 1: ~i(x) = ~2(x, i) for all x.

We shall show tha t this is the desired i.
Conditions 1, 2 ensure that we can find a j uniformly in f, g that

satisfies 4, f I i I < [g(J) I: First determine i, which we have shown to be
uniform in f, g. Then compare f l i I with I g(0)], I g(1) [, .-- until a
j is found that satisfies 4. For this j (cf. Eq. 1 and above instructions)

2 x Q.E.D. condition 3 is satisfied, ~ (x) = ~, (, i) = ~o(~)(x) for all x.
g is an algorithmic function for enumerating an infinite set of ma-

chines. The constructive nature of this proof enables one to effectively
replace g by a function g' which enumerates machines that are no larger,
and sometimes are considerably smaller than those enumerated by g.

I t has been said that since practically all computable functions are
primitive recursive, one does not need general recursion for any practical
purposes. Theorem 1, though, gives practical reasons for favoring gen-
eral recursion: I t implies tha t there exists a primitive recursive function
whose smallest derivation (defining equations) in the primitive recur-
sire format is considerably larger than its smallest derivation in the
general recursive format. More precisely, suppose primitive and general
recursion are defined by derivations as in Davis (1958). Take the size
of a derivation to be the number of letters in it. Then each primitive
recursive function has at least one smallest primitive reeursive deriva-
tion. The set of all such smallest derivations is r.e.; let g enumerate them.
Upon setting f (x) = n.x , the theorem supplies a primitive recursive

i The recursion theorem asserts that for every partial reeursive function h
there exists an integer i which is uniform in h such that ~(x) = h(x, i) for all x.

O N T H E SIZE O F M A C H I N E S 261

function whose smallest primitive recursive derivation is n times as
large as its smallest general reeursive derivation. The method of theorem
2 can be used to show that the primitive recursive derivation and the
much smaller general reeursive derivation take approximately the same
number of steps to compute the same function.

8. When a machine is reduced in size, it frequently happens that
the smaller machine takes more steps than the original larger one to do
its computations. To prepare the way for a study of this phenomenon,
we now introduce the axioms of Blum (1967) for step-counting. TNs
is done by associating with each partial recursive function ~ another
partiM reeursive function 4~ called its step-counting function. Intui-
tively, @,(x) represents the number of steps taken by M~ with input x
to compute ~(x) .

AXIOMS. Suppose the sequence of all partial recursive functions (~i)
has an acceptable Godel numbering. Let (~) denote any r.e. sequence of
(some but not necessarily all) partial recursive functions. We say that
(q~) is a sequence of step-counting functions for (¢i) if and only if

1. ~ (x) is defined *:~ q,~(x) is defined.
2. There exists a recursive function R such that

{1 if ~ (x) = y
R(i, x, y) = if not.

The first axiom asserts that if ~i(x) is defined, then the number of
steps required to compute it is finite, and vice versa, if the number of
steps required to compute ¢~(x) is finite, then ~4(x) is defmed. We shall
write "~(x) < ~ " instead of "¢i(x) is defined," and "q~(x) = ~ "
instead of "q)~(x) is undefined." The second axiom asserts that there is
an algorithm for deciding whether or not Mi with input x halts in y steps.
The predicate R of this axiom is similar to Kleene's T-predicate.

We note that axioms 1 and 2 are independent: A sequence of step-
counting functions that satisfies axiom 1 but not 2 is obtained by setting
• ~ = ~ for all i. On the other hand, ~ (x) = 0 for all i, x satisfies 2 but
not 1.

In the following sections, we shall always assume that (@~) is a se-
quence of step-counting functions for (~) . The function R will never be
mentioned, though it is implicit in every statement of the form "De-
termine whether @~(x) = y". This is determined by computing R(i, x, y).

4. The following theorem, which extends theorem 1, shows that

262 BLVM

the increase in number of steps that occurs when a machine is reduced in
size is negligible for all functions tha t are sufficiently difficult to compute.

THEOREM 2. There exists a recursive function h such that if
1. g is any recursive function with infinite range
2. f is any recursive function

then there exist i, j E N, both uniform in f, g, such that

4. f] i] < [g(j) [
5. for all but a finite number of integers x, [¢g(~)(x) defined ~ ~ (x) <=

h(x, ~o(~)(x))] (i.e., M~ does not take too many more steps than Mg(j)).
Remark. The function h(x, y) = c(x + y), c = constant, serves for

the class of Turing machines defined in the introduction. If these Turing
machines can have an unbounded number of tape symbols, then one
may choose c = 1.

Proof. We define a recursive function r. This r has the property tha t
for any f, g satisfying 1, 2 there exist integers i, j, in fact, the ones supplied
by the proof of theorem 1, and there exists an integer w such that

(a) ~g(~.)(x) defined ~ r(w, x, ¢g(i)(x)) -- ~i(x) for all x.
Out of r we define h to be the recursive function

h(x, y) = max {r(w, x, y)] w <= x}

whence it follows tha t for all sufficiently large x
(b) ~o) (x) defined ~ h(x, ¢I)~(j)(x)) => r(w, x, 4~o(j)(x)).

Together, (a) and (b) prove 5.
DEFINITION OF r(W, x, y). We choose some fixed effective 1-1 onto

map N - ~ N X . . - XN. The number w is a code word for a 5-tuple
, v J

5

(Wl, "" , ws). Set f = ~1, g = ¢~2. Determine i in terms of these f, g,
using the algorithm in the proof of theorem 1. This is possible since
tha t algorithm defines an index i for any partial recursive functions f, g,
not necessarily satisfying 1, 2 (though j is not necessarily defined unless
1, 2 are satisfied). Now set r(w, x, y) = ~ (x) if all the following hold:

(i) ~)~ l i I = w3 (s o f l i] is defined)
(ii) ~ 2 0 q)~2(]~) -- w5 (so g(0), . . . , g(w4) are defined)
(iii) There exists a j such t h a t j =< w4 a n d f l i l < I g(J) [
(iv) The l ea s t j satisfying (iii) satisfies ~g(~.)(x) = y

Set r(w, x, y) = 0 otherwise.
If (i) - (iv) are satisfied, then ~ and 4~g(~.) have the same domain, and

ON THE SIZE OF MACHINES 263

• g(j)(x) is defined by (iv). We note tha t if f, g satisfy 1, 2, then there
exists a j such tha t Ig(J) I > f l i] . Hence there exists a w =
{wl, . - - , w~}, wl , w2 being indices of f, g, which satisfies (i) - (i i i) . For
this w, equation (a) is satisfied. Q.E.D.

One can show tha t theorem 2 is made false by replacing the "for all
but a finite number of integers x" in 5 by "for all x". This is interesting
because theorem 3, which looks so much like theorem 2, does have "for
all x" in i~s version of 5.

THEOREM 3. 1. Let g be a recursive funetion satisfying ~g(s) = ~ for all j .
2. Let f , h be reeursive functions.

Then for every i ~ N there exists a j ~ N which is uniform in f, h, g, i,
such that

4. f l i I <] g(J)] (i.e., M~ is considerably smaller than M~(i))
5. For all x[~i(x) defined ~ h(x, ~ (x)) < ~(3")(x)] (i.e., M i takes

considerably fewer steps than Mg(i))
Proof. Select any integer i. We seek a j for which 3, 4 and 5 are true.

Th i s j is gotten as follows: We define a partial reeursive function r(n, ~, y)
uniformly infi h, g, i (Eq. 1). By an application of the recursion theorem
we obtain from it a recursive function q such that ~q(~)(x) = r(n, x, q(n))
(Eq. 2). This q is uniform in f, h, g, i. Finally, we show how to effec-
tively select n, so t h a t j = q(n) satisfies 3, 4, 5.

Equation 1: r(n, x, y) = n if f l i i >= i g(Y) I (i.e., if 4 is not
satisfied with y = j)

~ (x) if (i) f l i l < Ig(Y) I (4 is sat-
isfied with y = j)

and (ii) ~i(x) is defined
and (iii) h (x , ~ (x)) < ~o(~)(x) (5

is satisfied with y = j)
undefined otherwise.

This r is computable. The reeursion theorem ~ supplies a recursive func-
tion q which is uniform in f, h, g, i, such that ~(~)(x) = r(n, x, q (n)) .

2 The extended recursion theorem states that for every partial reeursive func-
tion r(x~ , . . . , x,~ , y~ , . . . , y,, , z) there exists a recursive function q which is
uniform in r such that ~q¢~ ~)(y~ , .. •, y~) = r(x~ , . . . , x,~ , y~ , . . . ,y~
q(x~, ... , x~)).

264 BLV~

Plugging into the definition of r, we see that

Equation 2: ~(.) (x) = n if f l i I >= I gq(n) I
~,(x) if (i) f l i l < Igq(n) I

and (ii) ~i(x) is defined
and (iii) h(x,a~, (x)) <~gq(.)(x)

undefined otherwise
H o w TO SELEC~r n. First note that f I i] >] gq(n)] means that there

exists a machine which computes the constant function ~ (~) (x) --
W~(~)(x) = n, whose size is less than a certain fixed integer f I i [. This is
impossible for all n, so there exists an n such that f l i] < I gq(n) I.
To find th is value of n, simply test q(0), q(1), q(2), . . . until an n
appears that satisfies f] i [< [gq(n) 1. For this particular choice of n,
s e t j = q(n). So 4 is satisfied. I t follows that

Equation3: ~¢(x) = ~dx) if (ii) ~dx) is defined and
(~i) h(x, ~(x)) < ~) (x)

undefined otherwise

5 is satisfied. Suppose ¢~(x) is defined, but that (to the contrary)
h(x, (~(x)) ~ Cq(~.)(x). Then r(n, x, j) is undefined. Hence ~j(x)
~q(j)(x) s ince~(j) (x) ~ h(x, ~ (x)) < oo. This contradicts 2: ~(j) = ¢~..

3 is satisfied. If ~ (x) is undefined, then ~j(x) is undefined (Eq. 3), so
~g(~)(x) = ~j(x) = ~dx) . If ~ (x) is defined, then the proof of 5 shows
that h(x, ~)~(x)) < ~(j) (x) , so (ii), (iii) in Eq. 3 are satisfied and there-
fore ~g(j)(x) = ~i(x). Q.E.D.

Any algorithmic function g for reducing the size of machines can thus
be effectively replaced by another function g' that further reduces the
size and number o~ steps taken by infinitely many machines.

We note that theorem 3 is curiously symmetric with respect to size
4 and steps 5.

ACK~OW~ED(~MES~S
I am especially grateful to my wife~ Lenore, for reading the manuscript ~nd

shortening the proofs, and to the referee for his most helpful suggestions.

RECEIVED: November 29, 1966

REFERENCES

Anm~, M. (1966), Speed-up theorems and incompleteness theorems in automata
theory. In "Automata Theory" (E. R. Caianiello, ed.) pp. 6-24. Academic
Press, New York.

ON THE SIZE OF MACHINES 265

ARBm, M., ~ND Br.TZM, M. (1965), Machine dependence of degrees of difficulty,
Prec. Am. Math. Soc. XVI, No. 3 (June), 442-447.

BLUM, M. (1967), A machine-independent theory of the complexity of recursive
functions, J. Assoc. Comp. Mach., XIV, No. 2 (April 1967) 322-336.

CHAITX~, G. (1966), On the length of programs for computing finite binary se-
quences, J. Assoc. Comp. Mach., XIH, No. 4 (Oct.), 547-569.

CHAITIN, G., On the simplicity and speed of programs for computing infinite sets
of natural numbers, J. Assoc. Comp. Mach., in press.

DAvis, M. (1958), "Computability and Unsolvability," McGraw-Hill, New York.
HART~A~IS, J., .aND ST~,ARNS, R. (1965), On the computational complexity of

algorithms, Trans. Amer. Math. See., CXVII, No. 5 (May), 285-306.
MINSXV, M. (1962), Size and structure of universal turing machines using tag

systems In "Recursive Function Theory, Proceedings of the Symposia in
Pure Mathematics" (Amer. Math. Soc. Pub.). vol. V. 229-237.

RoGeRs, H., JR. (1958), G6del numberings of partial recursive functions, J.
Symbol. Logic, XXIII , No. 3 (Sept.), 331-341.

ROGERS, H., JR. (1968), Recursive functions and effective computability, Mc-
Graw-Hill, New York, in press.

