
Advanced Programming Languages Problem Set 2
CS 6110 Spring 2015 Due: Weds. Feb 25, 2015

Problem Set 2

Exercises

1. Write a primitive recursive function is sqr(x) which returns the value 0
if x is a perfect square and 1 otherwise, e.g. is sqr(9) = 0, is sqr(5) = 1

Be as elegant as you can.

2. Higher order primitive recursion. We can define a sensible notion of a
“function primitive recursive in f” for f an arbitrary general function.
For example,

h(0, f) = f(0)
h(S(x), f) = f(h(x, f))

Is there a “primitive recursive function in f” that computes
µy.(f(y) = 0)? Explain your answer.

3. Give an example of a program than runs faster if ran lazily, and one
that runs faster if ran eagerly.

4. Give an “interesting” example of a program that uses dynamic scoping
to modify its behavior at runtime (using the Y combinator for example,
or using a fix that computes as follows fix(F ) → F (fix(F ))).

5. Background. The primitive recursive functions are a simple well known
class of computable functions defined by a programming language. We
introduced them using Kleene’s definition of an inductively defined class
of functions. Later we will see the Loop language as a very natural
imperative PL whose class of definable functions is exactly the primitive
recursive functions.

1



We call programming languages that define a subclass of the total com-
putable functions subrecursive. The CoqPL is subrecursive. Another
natural subrecursive class are the elementary functions. An interest-
ing issue is whether there is a subrecursive PL for the polynomial time
computable functions. There are several, and they are more complex
to define. We obtain a nice definition by introducing step counting in
subrecursive languages. We will investigate this topic later.

The goal of this problem is to describe how is to restrict the lambda
calculus so that it defines only primitive recursive functions. We will
assume an intuitively clear notations for natural numbers, but these
are not practical notations for feasible computations. Nevertheless,
Coq uses them for their logical simplicity.

(a) Write the design requirements for a λ-calculus based definition
of primitive recursive functions. A language computing all and
only primitive recursive functions. Have it use fix as a primitive
operator. Assume numerical terms, 0, S(0),... Add a primitive
conditional testing for 0 term cond(n; ; ).

(b) Show potential definitions of addition and multiplication in a lan-
guage of this kind.

2


