
Advanced Progamming Languages Lecture 7
CS 6110 Spring 2015 Weds. Feb. 4, 2015

Lecture 7

Topics

1. Review structural induction for λ-terms.

2. What is the right equality on λ-terms? Comments on Dr. Rahli’s lecture 6.

3. Combinators

• Another programming language (universal)

• Dictionary of combinators

4. Equations involving combinators

5. Translating λ-terms into combinators.

1. Structural induction for inductive types.

To prove assertions of the ∀x : λterm.P (x) we can use the induction on the structure
of λ-terms given by their inductive definition. Recall

λ-term =V ariable|Abstraction|Application

We took the variables, V ar, to be v0, v1, v2... The abstractions are λ(v.t) where v is
a V ar and t a λ-term. The applications are ap(t1; t2) where ti are terms. This is an
informal “type definition” in the informal language of the lectures and course notes.
We need the definition of the computation system before we can formally define types.

From the informal definition, we can see the inductive structure.

t = v | λ(v.t) | ap(t1; t2)
t = v | λ(v.t) | ap(t; t)

It’s okay to use in this format.

1

Aside: The Coq definition of λ-terms is also given like this.

Inductive tm : Type :=

| tvar : id→ tm

| tapp : tm→ tm→ tm

| taps : id→ tm→ tm

So we form elements such as tvac(x0), tapp(tvar(x0))(tvar(x0))

taps x0 (tvar x0) is λ(x0.x0)

We can see a tree like structure:

ap(;)
↗ ↖︷ ︸︸ ︷

λ(x.ap(;)
︷ ︸︸ ︷
λ(y.ap(;))

↗ ↖ ↗ ↖
x x x x

In Nuprl’s Constructive Type Theory (CTT), we use a co-inductive type and require
a finite bound, that is the tree is potentially unbounded.

2. Comments on Dr. Rahli’s Lecture 6

We have seen Barendregt’s notions of equality on λ-terms. There are already these
equalities:

t1 ≡ t2 Syntactic identity

t1 =α t2 α-equality

t1 =β t2 α and β equality

But what is the fundamental mathematical equality? Doug Howe (Cornell PhD, 1988)
found it! We and others call it Howe’s Squiggle Equality, t1 ∼ t2.

Either both terms diverge or both have the same outer operator and their subterms
are ∼ equal. This is close to Kleene equality on practical computable functions f ' g,
f(x) ' g(x) for all x ∈ N.

3. Combinators

One remarkable fact about the λ-calculus is that it is expressive enough to define the
natural numbers and all partial recursive (Turing computable) functions on them. One
uses the Church numerals cn = λfx.fn(x).

What is even more remarkable is that there is a much simpler and related computational
basis, combinators. The idea has its origins in the 1924 work of Schönfinkel who thought
that expressing logic using variables was a poor (misguided) idea. He said that the
logical fact that ∼ p ⇒ (p ⇒ q) is not about p or q or anything denoted by those
letters! Variables are a linguistic construct rather than a logical one.

2

According to Schönfinkel ∼ p⇒ (p⇒ q) is about the relationship between the logical
operators (functions) ∼ and ⇒ (implication).

This idea led to the definition of functions without using bound variables. He developed
a function calculus in terms of operators we call combinators.

Definition The combinatorial terms, CL-terms, are inductively defined as:

(i.) Variables x0, x1, x2, ...

(ii.) Constants S, K, and

(iii.) If P and Q are CL-terms then so is (PQ), their application.

Here are the key equations in the CL-theory:

1. P = P

2. (P = Q)⇒ (Q = P)

3. P = Q,Q = R⇒ P = R

4. P ⇒ Q⇒ PR = QR

5. P = Q⇒ RP = RQ

6. KPQ = P

7. SPQR = PR(QR)

Equation 7 is written in Barendregt’s cute way. Why is this cute? Does it give a
mnemonic for the rule?

There is a simple translation of these combinators to λ-terms. We have seen them
before.

K◦ = λ(x.λ(y.x)) S◦ = λ(x.λ(y.λ(z.xz(yz))))

A combinator is closed iff there are no variables in it, as in these examples.

Dictionary of Combinators

I ≡ SKK I◦ = λ(x.x)
B ≡ S(KS)K B◦ = λ(x, y, z.x(yz))
W ≡ SS(KI) W◦ = λ(x, y.xyy)
C ≡ S(BBS)(KK) Y◦ = λ(f.λ(x.f(xx))λ(x.f(xx))
Y ≡WS(BWB) Ω = λ(x.xx)λ(x.xx)

Can this be even simpler, a single basis element? Yes, as we discuss later.
What is the astonishing fact about all this?

3

Translating λ-terms to combinators (Section 5, p.47):

(i) [x].X ≡ I if X ≡ X

(ii) [x].X ≡ KX if X is an atom distinct from x, e.g. [x].Y ≡ KY

(iii) [x].X ≡ S([x].Y)([x].Z) if X = Y Z

If n > 1 then

(iv) [x1, ..., xn].X ≡ [x1].([x2, ...xn].X)

Notice that [x].X does not contain the variable x. The next step is this:

Let a, b be λ-terms

1. ā ≡ a if a is a variable or a primitive constant

2. (ab) ≡ āb̄

3. λ(x.a) ≡ [x].ā

The translation from combinators to λ-terms is easy. See Barendregt p.159 and index
of symbols p.605.

S◦ = λx, y, z.xz(yz)

K◦ = λx, y.x

B◦ = λxyz.x(yz)

W◦ = λxy.xyy

C◦ = λxyz.xzy

y◦ = λf.(λx.f(xx))(λx.f(xx))

Φ◦ = λxyzw.x(yz)(yw)

Ω◦ = (λx.xx)(λx.xx)

Basis of all life is 20 amino acids and the laws of chemistry.
Basis of all computation can be two combinators and the rules of reduction.
We’ll see in the next lecture that the basis can be even smaller!

4

